
ON HILBERT SCHEMES OF SURFACES
AND THEIR RÔLE IN STRING THEORY

EDWARD BERENGOLTZ
Sep 2020 – Jun 2021

MASTER’S THESIS in MATHEMATICS and THEORETICAL PHYSICS
SUPERVISED BY prof. dr. Eric Opdam, prof. dr. Erik Verlinde & dr. Raf Bocklandt

Instituut voor Theoretische Fysica Amsterdam
Korteweg–de Vries Instituut voor Wiskunde

Faculteit der Natuurwetenschappen, Wiskunde en Informatica



Abstract

Let X be a quasiprojective scheme over an algebraically closed field k and n ∈ N. Then the
Hilbert functor Hilbn

X : Schk
opp −→ Set parametrising families of proper, flat subschemes with

Hilbert polynomial the constant n is representable by the Hilbert scheme X[n]. If X is a surface,
Fogarty’s Theorem asserts X[n] inherits connectedness and smoothness from X and resolves
the singularities of the symmetric product Xn/Sn . For k = C and X projective and smooth,
we show the joint cohomology

⊕
n>0 H

•(X[n]; Q) of the underlying smooth manifolds of the
Hilbert schemes carries a Fock space representation of the infinite-dimensional Heisenberg
algebra and moreover gives rise to Göttsche’s formula for the generating function of the Betti
numbers. This allows us to compute string theoretical partition functions for N = 4 SU(r)-
super-Yang–Mills theories in the worldvolume of D-branes wrapped around various surfaces.
Such systems can be utilised to test the S-duality conjectures for r = 2 as Vafa and Witten did
for e.g. K3 surfaces; our results for this case agree with theirs. We also discuss their conjectured
generalisation to r > 2 on surfaces of general type from the recent algebro-geometric research’s
point of view. Finally, we sketch how compactifying a type IIA superstring theory to K3× T2

and using the DMVV formula (which generalises Göttsche to elliptic genera) computes the
entropy of dyonic black holes via the branes’ quarter-BPS states.
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Eärendil was a mariner
that tarried in Arvernien;
he built a boat of timber felled
in Nimbrethil to journey in;
her sails he wove of silver fair,
of silver were her lanterns made,
her prow was fashioned like a swan,
and light upon her banners laid.

In panoply of ancient kings,
in chainéd rings he armoured him;
his shining shield was scored with runes
to ward all wounds and harm from him;
his bow was made of dragon-horn,
his arrows shorn of ebony;
of silver was his habergeon,
his scabbard of chalcedony;
his sword of steel was valiant,
of adamant his helmet tall,
an eagle-plume upon his crest,
upon his breast an emerald.

Beneath the Moon and under star
he wandered far from northern strands,
bewildered on enchanted ways
beyond the days of mortal lands.
From gnashing of the Narrow Ice
where shadow lies on frozen hills,
from nether heats and burning waste
he turned in haste, and roving still
on starless waters far astray
at last he came to Night of Naught,
and passed, and never sight he saw
of shining shore nor light he sought.

— J. R. R. TOLKIEN (1892–1973)

Excerpt from the Song of Eärendil (ll. 1–31), sung by
Bilbo Baggins in The Lord of the Rings, The Fellowship
of the Ring, Book 2, Chapter 1, Many Meetings.
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CONVENTIONS AND NOTATION

The natural numbers do not contain 0 and we write N0 = {0, 1, 2, . . .}. If G is a group
acting on a set X, the invariant elements are denoted XG. The symmetric group on n
letters is Sn. The (strict) upper halfplane in C is written H rather than H, which is used
for the quaternion algebra.

Rings and algebras are unital and associative (in particular, a Lie algebra is not an
algebra). All rings are commutative if not specified otherwise. The units of a ring R
are written R×. Unless otherwise indicated, a field k is algebraically closed and of
characteristic zero. For a field k, write the dual numbers as k[ε] = k[t]

/
(t2) .

If S is a scheme, the category of S-schemes is denoted SchS. If S = Spec R, we write
SchR as usual. When working with S-schemes, the symbol × shall sometimes be used
to denote the fibred product ×S, which is indeed the product in SchS. If S = Spec k for k
a field, Pn and An mean Pn

k and An
k , respectively, when there is no confusion.

A point on a scheme shall mean a closed point, unless otherwise indicated. Given a
scheme X, its functor of points is denoted X(−). For a point x ∈ X (not necessarily
closed), we denote the maximal ideal of its local ring by mx and its residue field by
κ(x) = OX,x

/
mx . If X is integral, we denote its function field by κ(X). The canonical

divisor of X is written KX or simply K and the canonical line bundle, O(KX).

The dual of an OX-module F is written F∨. If X is a smooth (complex) manifold,
the sections of a smooth (holomorphic) fibre bundle are tacitly assumed to be smooth
(holomorphic). For n ∈N0, we write Ωn(X) = Γ(X,

∧nT∗X) for the space of differential
n-forms. Similarly, if E −→ X is a vector bundle, we write Ωn(X, E) = Γ(X,

∧nT∗X⊗ E)
for the E-valued n-forms. Given a vector field ξ ∈ Γ(X,TX) and an n-form ω on X, we
write ξ y ω for the (n− 1)-form ω(ξ,−) obtained by contraction.

For any sheaf cohomology module Hn(X,F ) of a sheaf F on a k-scheme X, we write
hn(X,F ) for its dimension over k and χ(F ) = ∑n>0 hn(X,F ) for its Euler characteristic.
Whenever the (co)homology of a smooth scheme or variety over C is concerned, it
is to be understood as the (co)homology of the underlying smooth manifold, in the
analytic topology, with coefficients in Q unless otherwise indicated. We generally do not
discriminate between smooth complex schemes and their analytifications in terms of
notation. All complex curves and surfaces are assumed to be algebraic.

Given a vector space V, its symmetric algebra is denoted SV and its exterior algebra,
∧

V
(or S•V and

∧•V, respectively, to emphasise grading). The nth symmetric and exterior
powers are written SnV and

∧nV, respectively. Its dual is V∗. Given an inner product
(over C), the Hermitian conjugate, or adjoint, of a linear map X is written X: (not X∗).

We work in natural units c = h̄ = kB = GN = 1 but keep the string constant α′. Lightcone
coordinates for string quantisation have indices 0 and 1.
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Sight of the eyes, hearing of the ears,
breathing of the nose;
they report to the heart, it
makes come forth every understanding.

— SHABAKA STONE

Excerpt from the Memphite Theology (ori-
ginal from ca. 3000 BC, recopied in 710 BC).

Τὸν ζητοῦντά τι περὶ τῶν ἀδήλων, ἂν βλέπῃ τοὺς τοῦ

δυνάτου τρόπους πλείονας, περὶ τοῦδέ τινος μόνου

τολμηρὸν καταποφαίνεσθαι· μάντεως γὰρ μᾶλλόν ἐστιν

τὸ τοιοῦτον ἢ ἀ[ν]δρὸς σοφοῦ. Τὸ μέντοι λέγειν πάντας

μὲν ἐνδεχομένους, πιθανώτερον δ΄ εἶναι τόνδε τοῦδε

ὀρθῶς ἔχει.

If one is investigating things that are not directly
perceptible, and if one sees that several explanations
are possible, it is reckless to make a dogmatic
pronouncement concerning any single one; such a
procedure is characteristic of a seer rather than a
wise man. It is correct, however, to say that, while all
explanations are possible, this one is more plausible
than that.

— DIOGENES OF OENOANDA (fl. ca. 117–38 AD)

Excerpt from the Epicurean inscription in the city of
Oenoanda, Lycia, fr. III ll. 2–13 (transl. M. F. Smith).
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An quicquam melius amicis divinitas mortalibus concesserit
nescio, si modo ii sunt qui digne expetiti digneque videantur
habiti.

— GERBERT D’AURILLAC (Pope Sylvester II) (ca. 946–1003),
Letter XLVI, addressed to Abbot Gerald of Aurillac.
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In English tonge I schal ow telle,
if e wyth me so longe wil dwelle.

No Latyn wil I speke no waste,
But English, þat men vse mast,
Þat can eche man vnderstande,
Þat is born in Ingelande;
For þat langage is most chewyd,
Os wel among lered os lewyd.
Latyn, as I trowe, can nane
But þo that haueth it in scole tane.
And somme can Frensche and no Latyn,
Þat vsed han cowrt and dwellen þerein.
And somme can of Latyn a party
Þat can of Frensche but febly.
And somme vnderstonde wel Englysch
Þat can noþer Latyn nor Frankys.
Boþe lered and lewed, olde and onge,
Alle vnderstonden english tonge.

— WILLIAM OF NASSINGTON (fl. ca. 1325)

Excerpt from Speculum Vitae (ll. 61–78), likely
written by this cleric from Nassington.

Telle me this now feythfully,
Have y not preved thus symply,
Without any subtilite
Of speche, or gret prolixite
Of termes of philosophie,
Of figures of poetrie,
Or colours of rethorike?
Pardee, hit oughte the to lyke!
For hard langage and hard matere
Ys encombrous for to here
Attones; wost thou not wel this?

— GEOFFREY CHAUCER (ca. 1344–1400)

Excerpt from the Hous of Fame (ll. 853–63),
spoken by Jupiter’s golden eagle.
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Die Eule der Minerva beginnt erst mit der einbrechenden
Dämmerung ihren Flug.

— GEORG W. F. HEGEL (1770–1831),
Grundlinien der Philosophie des Rechts, Vorrede.

1INTRODUCTION

S
OME concepts enjoy the nigh thaumaturgic property of arising in many at first sight
unrelated areas of mathematics. This thesis deals with one such anagogic object,
known as the Hilbert scheme of points. Whilst its narrative commences in France in the

latter half of the twentieth century, let us briefly visit a different country for historical context.

1.1 Geometric dreams and revolutionary schemes

For roughly fifty years around the turn of the century past, the Italian school laboured tirelessly
to advance the study of algebraic geometry. Its mathematicians’ work on algebraic surfaces
in particular remains an invaluable framework in geometry today. By the end of the Second
World War however, the Italian school’s halcyon days were largely over; a new player had set
foot onto the field of algebraic geometry.

Born to anarchist parents who would eventually participate in both the Russian and Spanish
Civil Wars, Alexandre Grothendieck (1928–2014) himself revolutionised algebraic geometry
and its relation to other areas of mathematics in manifold ways. Arguably his most profound
contribution was the novel shift from what is now often called ‘classical’ geometry to the
language of schemes. In May of 1961 — but a year since the first part of his monumental treatise
Éléments de géométrie algébrique had been published — Grothendieck introduced [Groth61] the
concept of Hilbert schemes at the 221st Séminaire Bourbaki.[1] Perhaps portentously, this may
have been the final nail in the coffin for Francesco Severi, whose allegiance to the Mussolini’s
fascist regime and refusal to acknowledge his mathematical mistakes had done little good for
the Italian school in its waning stages; he would die in December of that same year.

Hilbert schemes took flight immediately. Grothendieck proceeded to describe many of their
properties, and it was soon realised that particularly for surfaces the theory of Hilbert schemes
was incredibly useful and well behaved. In 1968, John Fogarty published his famous theorem

[1]Naming these objects after David Hilbert, who had died almost a score years prior, might seem somewhat
anachronistic; the reason lies in their definition, which involves Hilbert polynomials.
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on smoothness that we shall also encounter in this thesis and serves as a pivot for the two-
dimensional case. Many more names came to be associated to the theory over the subsequent
decades: Beauville, Briançon, Ellingsrud, Huybrechts, Mukai and Strømme are just a few.
We highlight two in particular: the Danish-born German Lothar Göttsche and the Japanese
Hiraku Nakajima. The former’s 1988 doctoral dissertation [Gött88] revolved around a now
famous formula pertaining to the cohomology of Hilbert schemes, which will receive ample
attention in this thesis. His subsequent contributions are plentiful and his is a name we oft
encounter. Another such player is Nakajima, some of whose work on the cohomology of Hilbert
schemes we shall also treat. Beside that, he has published much on Hilbert schemes’ relation to
representation theory and (mathematical) physics, a good portion of which is described in his
book [Nakaj99].

Physics indeed, for the physicists would not be idle in the matter. Hilbert schemes began to
garner their, it turns out, indelible interest and, around the 1980s, many a string theorist made
inroads into a domain that had previously been algebraic geometers’ prerogative. Before we
sketch how this is actually not surprising, let us first explain what these Hilbert schemes are in
the first place.

1.2 Pointing out the obvious

Roughly speaking, for any n ∈N, the nth Hilbert scheme of a given scheme X is a moduli space
classifying flat and proper closed subschemes of X of length n. In this thesis, ‘Hilbert scheme’
always means ‘Hilbert scheme of points’ (sometimes called punctual Hilbert schemes), for we
are interested in the moduli space of collections of n points on X, viewed as zero-dimensional
subschemes. This seems an innocuous concept, but its applications are myriad and we do not
treat all of them by any margin. Göttsche provides a general overview [Gött03] wherein he
avers its ubiquity. Hilbert schemes appear in the study of topological invariants such as Betti
and Hodge numbers of surfaces, the representation theory of quivers and Lie algebras, moduli
spaces of sheaves, and enumerative geometry of curves.

The attentive reader may be thinking to himself, ’But if you want to study configurations of
points on a scheme X, does the product of X with itself not suffice?’ This is a sound suggestion;
for any natural number n, the set Xn/Sn of unordered collections of n points on X can be
equipped with a scheme structure and thus appears to be a good candidate for such a moduli
space. In fact, in the one-dimensional case, it is a very good candidate indeed: the Hilbert
scheme is then isomorphic to that simple construction. In dimensions three and higher, it is
hardly good at all — but then the Hilbert scheme is even worse, it transpires. The theory of
Hilbert schemes in this range of dimensions is quite poorly behaved and we shall not delve into
it. The relevance of surfaces mentioned prior is not coincidental — it is this two-dimensional
case, combining the properties of being both interesting and intelligible, where the power of
Hilbert schemes is most markedly demonstrated, as they repair the defects of Xn/Sn in an
efficient fashion.
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At this point, the reader may be criticising the vague language above. What is ‘good’ or ‘bad’
about Xn/Sn and why is a Hilbert scheme ‘better’ or ‘worse’ depending on the dimension?
Although these ideas shall of course be made precise, it may be worth briefly responding
to this query. The point is that one wishes for a moduli space parametrising some object to
‘inherit’ certain desirable properties of that object. Barring the one-dimensional case, where
the number of dimensions is happily too low for things to go wrong, the symmetric product
Xn/Sn fails to do this for a very important property. In dimensions two and higher, this space
is always singular, even if X itself is smooth. If X is two-dimensional, the Hilbert scheme is
well behaved, however, and turns out to be smooth if X is by the aforementioned theorem of
Fogarty’s.

This prospect sounds promising, at least for surfaces (and curves). Two natural questions arise:
those of existence and uniqueness. The latter is of no concern whatsoever: as we shall see, the
Hilbert scheme represents a certain functor and is therefore unique up to unique isomorphism
by Yoneda’s Lemma, provided it exists. Happily, the Hilbert scheme of X does exist in cases of
interest: Grothendieck proved that quasiprojectiveness of X is a sufficient condition, for example
if X is a scheme over a field. On one hand, this is excellent news, for the quasiprojective
schemes include both the affine and the projective ones, which are the two most important
classes. But on the other hand, if X is not quasiprojective, its Hilbert scheme need not exist
(and there are indeed counterexamples), which, in the words of Grothendieck, « Impose
donc des limitations sérieuses aux possibilités de constructions non projectives en Géométrie
algébrique. » Fortunately, this is not an obstacle of any substance to our endeavours, as we shall
almost exclusively work with smooth surfaces — affine and projective — over an algebraically
closed field.

One more thing remains to be said on the existence of Hilbert schemes. As indicated, they are
defined ‘indirectly’ as the objects representing a certain functor on the category of schemes.
As such, in view of applications, the Hilbert scheme of X is rarely interesting as an actual
scheme; it is its functor of points that is pertinent to its study. For this reason, we omit the
proof of Grothendieck’s existence theorem; the book [FGA] does an excellent job of explaining
the construction. The machinery of the proof is abstract; in fact, the schemes themselves are
often quite messy.

1.3 From mathematics to physics...

To see how Hilbert schemes should enter the realm of physics naturally, let us follow Robbert
Dijkgraaf’s argument in [Dijk1]. Consider their rôle as ‘solution to the problems of the symmet-
ric product’ suggested prior. Given a classical one-particle system on an (algebraic, symplectic)
manifold X, first quantisation is the assignment thereto of (in particular) a Hilbert space of
states. One may subsequently apply second quantisation in order to study many-body physics
on X. The latter action tantamounts to taking all symmetric tensor powers of the Hilbert space,
which together form its symmetric algebra. Now suppose one were to swap the order of
quantisation. One would first obtain a classical system of n identical particles, for each n ∈N,
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on X, but viewed collectively as n-particle configurations on X — in other words, as points of
Xn/Sn . This is where a problem arises: this space is generally not smooth, so how should one
proceed? Enter Hilbert schemes, which provide succour in the case that X is a complex surface
(and hence a real fourfold). Fortunately, this is often the physical situation, but one should be
careful to ensure that, in replacing the Xn/Sn with the respective Hilbert schemes of n points
of X, all physical quantities one wishes to study (e.g. partition functions) behave adequately.
That is, the ‘quantisation diagram’ should be commutative. This was actually something of an
issue when physicists first contemplated these matters. Defining the right invariants for Xn/Sn

that translate in a desirable fashion upon transitioning to Hilbert schemes was a nontrivial
conundrum, but it was solved; we will see examples of this so-called orbifold physics in this
thesis.

Physically speaking then, saying symmetric product means saying Hilbert scheme when
working with algebraic fourfolds. There are more profound connections between physics and
Hilbert schemes of surfaces, though. To see how, consider the concept of dualities in string
theory. A well-known example is that of T-duality between type IIA and IIB string theories,
compactified on some smooth manifold. The duality involves the sign change of the left-movers
of a closed string, but not the right-movers, along the directions determined by this manifold.
This has the effect of swapping Neumann and Dirichlet boundary conditions, thus changing
the dimensions of D-branes lying on the manifold. Another duality is between heterotic (in
which the left-movers are bosonic (in 26 dimensions) and the right-movers, fermionic (in ten))
and type II theory. Such proposed dualities relate seemingly different theories to one another,
but are in practice difficult to verify.

A paramount facet of physics is N = 4 supersymmetric Yang–Mills theory on a Riemannian
fourfold (in our endeavours, an algebraic complex surface), for which such verifications
sometimes can be carried out. Akin to how ordinary Maxwell theory of electromagnetism
is supposed to be symmetric under the exchanging of electric and magnetic fields (with a
sign), Claus Montonen and David Olive famously conjectured in their 1977 article [MontOlive]
that these gauge theories have such a symmetry swapping weak and strong coupling.[2]

Originally, this swapping (which also replaces the structure group of the Yang–Mills theory
with — excitingly — its Langlands dual) was suggested to be just that: a swapping, or Z/2Z-
symmetry. Motivated by string theory, it was later realised that this should in fact be a bigger
symmetry group acting on the complex coupling constant, namely SL2(Z). This conjecture is
now known as S-duality, or rather a special case thereof.

The proposed group is, of course, very familiar and its appearance suggests that the physical
quantities associated to this theory should be modular. Initially, Witten was sceptical of the
Montonen–Olive conjecture and stood athwart of its advancement. Howbeit, evidence of
the contrary mounted over the years and, as is the wont of learnèd men, he was eventally
convinced, which subsequently lent substantial impetus to research. In their famous 1994
article [VafaWitten], the illustrious Cumrun Vafa and Edward Witten set out to test the S-

[2]The probable requirement of supersymmetry was added in 1978 by Olive and Edward Witten and the value
of N another year later by Hugh Osborn.
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duality predictions for SU(2)-Yang–Mills theories on a number of algebraic surfaces. They
indeed found that the partition functions had modular properties and moreover that string
theoretical state counting functions serendipitously surfaced in their expressions. These are
directly related to the cohomology of Hilbert schemes via Göttsche’s formula. The partition
functions they considered are defined in terms of the cohomologies of the moduli spaces of
solutions to the Yang–Mills equations of motion, which are ‘related to’ (in a sense to be made
precise and dependent on the surface) the Hilbert schemes of the surface.

1.4 ...and beyond!

Apart from carrying out verifications for SU(2), Vafa and Witten attempted to generalise
their discussion to SU(k) for higher values of k as well as to other surfaces of general type
“by physical methods”. This has led to a bewildering array of mathematical developments
related to Hilbert schemes. Hilbert himself allegedly once said: „Die Physik ist für die Physiker
eigentlich viel zu schwer.“ A brutal yet familiar adage — for several decades, physics has
been practised at such a high level that mathematics is hardly able to keep abreast. If the
latter be a many-towered edifice serving as the bedrock for new research, modern physics
forms its loftiest, precariously tottering spires that protrude into the firmaments. To amend
Hilbert; physics is too difficult for mathematicians! It is therefore scarcely surprising that the
mathematical ramifications of Vafa and Witten’s work needed some time to ascend to the
required elevation.

Whilst Grothendieck spent his last years a tatterdemalion eating dandelions in the heights of
the Pyrenees (elevation of an altogether different kind), mathematicians set to converting Vafa
and Witten’s physics into tractable mathematics. Around 2015, the process started bearing fruit.
In 2018, Yuuji Tanaka and Richard Thomas published a (then pre-printed) article [TanaThom]
in which they properly define the Vafa–Witten invariants generalising the quantities first studied
in [VafaWitten]. The theory is to be understood within the framework of moduli spaces of
(semi)stable sheaves of the base surface, which can be related to its Hilbert scheme (with
varying degrees of difficulty depending on the surface).

The proposed generalisation to k > 2 proved to be surprisingly difficult. Göttsche, along with
Martijn Kool and others, have since been developing methods to replicate Vafa and Witten’s
computations in a mathematically sound manner. This brings us to the very frontier of research.
They found the correct mathematical formulæ for k = 2, 3 a few years ago and their results
concurred with the physicists’. Recently, Göttsche and Kool have been working on k = 4, 5 and
found the ‘modular structure to become increasingly exotic.’ [Kool]

In this thesis, we aim to show how Hilbert schemes rear their heads above these parapets
mathematical and physical. Concretely, we will study a type IIA string theory compactified on
an algebraic surface, into which we incorporate an N = 4 super-Yang–Mills theory by means
of D-branes, paving the way for Vafa and Witten’s machinery. We then proceed to compactify
further to five- and six-dimensional manifolds of the form an algebraic surface times a circle or
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torus, respectively. In this scenario, there exists a generalisation [DMVV] of Göttsche’s formula
involving a topological invariant called the elliptic genus, due to Dijkgraaf, Erik and Herman
Verlinde, and Gregory Moore, published in 1997. This DMVV formula directly involves Hilbert
schemes and is seemingly also related to the work of Kool and cohorts. Moreover, it leads to
the computation of the entropy of charged black holes by considering BPS states of dyons.

Quite plainly, the story of Hilbert schemes is far from finished!

1.5 A user’s manual

The work is structured as follows. Chapter 2 introduces the concept of symmetric products
and Hilbert schemes in abstracto. It focusses particularly on curves and surfaces and treats a
number of intuitive examples. At the end, a partial proof of Fogarty’s Theorem is given.

The next chapter deals with the basics of Yang–Mills theory as well as explaining the S-duality
conjecture in more detail. We spend some time analysing the content of Vafa and Witten’s
article, recalling the definition of the Langlands dual group along the way. The famous ADHM
construction of instantons on R4 is then outlined. Chapter 4 relates this construction to the
Hilbert scheme of the complex affine plane via quiver representations, commencing with a
thorough treatise of the latter.

Chapter 5 sets up the orbifold techniques mentioned earlier and in particular explains how
partition functions and genera such as Euler characteristics appear in physics. Moreover,
it defines orbifold cohomology as the correct cohomology theory to use for the symmetric
product. It goes on to present and string theoretically interpret Göttsche’s formula before
introducing the DMVV formula and shedding light on its significance. The chapter ends with
a discussion of the heterotic–type II duality and its relevance.

In the following chapter, the preceding theory is at last collected and applied to a system of
D-branes in string theory. It is shown how these harbour a Yang–Mills gauge theory whose
ground states are given by the cohomology of the moduli space of Yang–Mills instantons
on the branes, upon which the Göttsche and DMVV formulæ can then be unleashed. It then
highlights two examples of such moduli spaces: that on R4, using the ADHM construction,
and that on a K3 surface, for which we retrieve the result of Vafa and Witten.

The physical portion of the thesis ends with Chapter 7, which deals with black hole entropy and
its relation to the DMVV formula. It globally recounts the article on the subject by Strominger
and Vafa before summarising the dyon counting by Dijkgraaf, Verlinde and Verlinde.

The whimsically titled Chapter 8 is devoted to an interesting result [Nakaj97] of Nakajima’s
relating Hilbert schemes to representation theory of Lie algebras as an application of Göttsche’s
formula. It is also physically relevant; Nakajima showed that the formal sum of the cohomolo-
gies of all Hilbert schemes of a smooth projective surface carries an irreducible Fock space
representation of the Heisenberg algebra. The chapter mainly presents the construction of the
representation and sketches the proof of Nakajima’s theorem.
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The final chapter is less rigorous than are the preceding ones and aims to give a global overview
of the recent mathematical research pertaining to the work of Vafa and Witten. It explains the
notion of stability of sheaves and their moduli spaces before sketching the work that has been
carried out over the past few years in verifying Vafa and Witten’s computations and proving
generalisations.

Appendix A contains reminders of some relevant subjects that the reader is invited to examine
before proceeding. It also establishes some conventions (e.g. the definition of a surface) and
contains several excursus on background material.

On the reader’s part, a firm basis in ‘as much algebraic geometry as can be mustered’ is
expected, in particular using the language of schemes. Our main source of reference for
definitions and technical results is the book [Harts] by Hartshorne. Moreover, some familiarity
with representation theory of Lie algebras and quivers, (co)homology theory, elementary
category theory and some differential geometry is expected. Most chapters and sections will
provide references to relevant background material. On the physics side, the reader should be
comfortable with the language and conventions of string theory. There are many good texts
for this; we cite [BlumLüstThei] for its completeness, although it is rather lengthy. Yang–Mills
theories and supersymmetry are recalled in detail because of their prominence, but the reader
is expected to have encountered the concepts before.

∗ ∗∗

This thesis is at times perhaps more verbose than most.[3] Various factors have impeded the
formulation of a single main goal, the result of which is a rather longer work treating a variety
of subjects showcasing multiple aspects of Hilbert schemes.[4] Its share of lengthy explanations,
plenitude of side remarks and oft referencing additional sources for the interested reader’s
convenience are intended to convey intuition and sketch broader context. This is a result of the
author’s mixed audience, comprising both physicists and mathematicians. It is his hope that
this approach provide assuagement and assurance to his dichotomous readership, which pray
acquiesce in his indulging in palaverous prolixity throughout this perchance grandiloquent
Introduction. The reader may withal rest assured that the author has by no means aimed to
lavish the remainder of the text with any such obfuscating language. This would only serve to
transform an otherwise pleasant perusal of this work into a chaotic crucible of confusion. The
author, inveterate pedant though he be, wholly takes heed of the message borne by Chaucer’s
eagle and uses plain (though by no means anæmic) language throughout the thesis.

On the subject of which, he also hopes that the reader enjoy the herd of epigraphs and citations
dotted around this work as though it were the cattle of Geryon. They have been meticulously
selected with utmost diligence to fit their placement, sometimes in a manner that is not obvious.
The reader is invited to contemplate these connections should boredom strike.

[3]To the author’s amusement, it has been described as a ‘many-tentacled amœba’ and ’the Hydra of Lerna’.
[4]This sometimes grew out of control, causing several chapters to split in twain. Hydra of Lerna indeed.
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For heav’nly mindes from uch di empers foule
Are ever cleer. Whereof hee oon aware,
Each perturbation mooth’d with outward calme,
Artificer of fraud; and was the fir
That practi d fal ood under aintly ew,

— JOHN MILTON (1608–74),
Paradise Lo , ll. IV.118–22.

2THE HILBERT SCHEME OF POINTS

W
ITHOUT any more linguistic histrionics, the thesis proper commences by treating
the definition and basic properties of Hilbert schemes. We start by introducing the
symmetric product and its ailments and then proceed with the general definition

of Hilbert schemes, before quickly specifying to the desired situation. As indicated in the
Introduction, we do not treat the proof of Grothendieck’s existence theorem. The interested
reader may consult the original article [Groth61] (caveat lector) or the more intelligible ap-
proach (pace Grothendieck) by the authors of [FGA], particularly the seventh chapter hereof.
Explicit equations for affine covers of Hilbert schemes are described in [Bertin], which we do
not recommend that the reader attempt to fathom.

We subsequently study properties of the Hilbert scheme and importantly, we define the Hilbert–
Chow morphism, which exhibits the connection between Hilbert schemes and symmetric
products of surfaces, due to Fogarty. For this part we mainly follow the book by Nakajima
[Nakaj99], supplemented where needed by the Montréal lecture notes [Lehn]. The reader is
assumed to be familiar with the notions in Appendix A.1.1.

2.1 A spot of bother with symmetric products

Fix a field k and let n ∈N. If we are interested in studying the ‘moduli space of configurations
of n points’ on a scheme over k, it makes sense to start with the helpful suggestion supplied by
the apostrophic reader in the Introduction and see how far we come. A first observation is the
following: if we have a configuration of points, it should be identified with the configuration
of any permutation of those same points.
DEFINITION 2.1.1. Let X be a quasiprojective k-scheme. Its n-fold symmetric product is

SnX := (X× . . .× X)
/

Sn ,

where there are n factors of X and the product carries the natural permutation action.

The set SnX can be given the structure of a scheme, as follows. We should show that Xn −� SnX
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is a scheme-theoretic quotient, meaning the fibres of this map are Sn-orbits and any symmetric
(viz. Sn-invariant) morphism of schemes out of Xn factorises over this quotient.[1] This is
completely general, using that X’s being quasiprojective over k implies that its n-fold fibred
product with itself is too.

PROPOSITION 2.1.2. Let Y be a quasiprojective scheme carrying the action of a finite group G. Then
the quotient Y/G, in the sense above, exists as a scheme. Moreover, it is quasiprojective, and even
projective if Y is.

Proof. We only give a sketch of the proof; for details, consult [Harris].

The idea is that for an affine scheme Spec R, there is an induced action of G on the k-algebra
R, and the inclusion RG ↪−→ R yields the desired quotient scheme Spec RG. For general Y,
this can be done on an open cover of affines. One can pick such a cover {Ui}i such that each
G-orbit in Y is contained in some Ui by finiteness of the group, and then take the open cover
{Vi}i, with

Vi :=
⋂

g∈G

g ·Ui,

of G-invariant affines (using that quasiprojective schemes are separated). One need then only
show that the affine quotients Vi/G glue appropriately. ���

The points of SnX are sometimes written as formal sums, called cycles, of the form ∑x∈X(k) nxx,
such that nx ∈ N0 and ∑x nx = n. This notation makes sense because the points are un-
ordered. We point out the trivial observation that S1X = X, and we set S0X := Spec k for later
convenience.

The symmetric product is a scheme, and its points are precisely the configurations that we seek.
Moreover, it inherits projectiveness of the base scheme. A logical question to ask is whether
this candidate moduli space preserves smoothness of X. The answer is that it does only seldom,
namely precisely when dim X 6 1.

PROPOSITION 2.1.3. Suppose X is smooth and n > 1. Then SnX is smooth if and only if X is a curve
or a point.

Proof. The zero-dimensional case is trivial. Suppose that X is a smooth curve. Since smoothness
is local, we may reduce to the affine case. Moreover, because X is essentially a variety and in
view of the proof of Proposition 2.1.2, we may assume X = A1. Then

SnA1 = An/Sn = Spec(k[X1, . . . , Xn]
Sn) = Spec k[σ1, . . . , σn] = An,

where σi is the elementary symmetric polynomial of degree i in the Xj, and hence this is
smooth.

Conversely, suppose dim X = 2. The higher-dimensional cases are analogous to this one with
more cumbersome notation so we omit them. By the same argument as before, we may assume

[1]It is immediate that such a quotient is unique if it exists.
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X = A2 so that SnX = Spec(k[X1, Y1, . . . , Xn, Yn]Sn), where Sn acts by permuting the (Xj, Yj) as
pairs. The ring of invariants contains all σi(X), the ith elementary symmetric polynomial in the
variables Xj, where 1 6 i 6 n, and similar for σi(Y).

Take the origin 0 in SnX. Its maximal ideal m0 contains all σi(X) and σi(Y). Moreover, it contains
the polynomial ∑j XjYj; we claim it is k-linearly independent from the elementary symmetric
polynomials modulo m2

0. This means

dimk T0(SnX) = dimk
(
m0
/
m2

0
)∗
> 2n + 1 > 2n = dim SnX.

The tangent space exceeds the dimension of the scheme, so the origin is a singular point.

In order to prove the claim, first notice that all σi(X) are linearly independent in m0
/
m2

0 .
Indeed, supposing ∑n

i=1 aiσi(X) ∈ m2
0, the fundamental theorem dictates that this sum can be

written as a product of polynomials P(σ1(X), . . . , σn(X))Q(σ1(X), . . . , σn(X)) in the elementary
symmetric polynomials, with the degrees of P and Q at least one for the expression to lie in m2

0.
Hence the expression has degree at least two in the σi(X) but the left-hand side is linear and
the decomposition is unique, so all ai are zero. An analogous statement holds for the σi(Y).

Now, suppose
ÿ

i

aiσi(X) + biσi(Y) + c
ÿ

j

XjYj ∈ m2
0

for certain ai, bi, c ∈ k. Again, this can be written as the product of two polynomials P, Q in
the elementary symmetric polynomials in both the Xj and the Yj. Setting all Yj = 0 and using
linear independence of the σi(X) shows that ai = 0 for all i and similarly bi = 0 by setting
Xj = 0. This leaves c ∑j XjYj being a product of polynomials in the elementary symmetric
polynomials, but unless c = 0, such a product always has crossterms XjY` for j 6= `. Withal
these do not appear, finishing the proof. ���

We conclude by introducing the so-called big diagonal in the symmetric product. Let ∆n
X be the

subfunctor of the functor of points of the symmetric product given on a k-scheme S by

∆n
X(S) :=

{
ÿ

nxx ∈ SnX(S)
∣∣ nx > 1 for some x

}
. (2.1.1)

One can show that this functor is represented by a closed subscheme of SnX. This is somewhat
subtle, requiring separatedness of X (which is guaranteed if X is quasiprojective over k). We
write ∆ := ∆n

X(k) when X and n are clear from context. Its complement SnX(k) \ ∆, sometimes
called the configuration space of X, comprises those n-point configurations on X such that all
points are distinct. It is plainly open and dense and, in fact, smooth of dimension n dim X if X
is smooth.

REMARK 2.1.4. In fact, there is a so-called stratification

SnX =
⋃
λ ` n

Sn
λX,

where for a partition λ = (n1 > n2 > . . . > n`) of n (i.e., ∑ ni = n), we set an open subfunctor

Sn
λX =

{
ÿ̀

i=1

nixi

∣∣∣∣∣ all xi distinct

}
.
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We state without proof that dim Sn
λX = `dim X and remark the obvious fact that the comple-

ment of ∆ is Sn
(1,...,1)X. See [Nakaj99] for details. We shall not return to this construction in the

forthcoming excepting the notation, which reappears in Chapter 6.

If we were to restrict ourselves to the one-dimensional case, the symmetric product would
be fine and dandy. We are interested in surfaces, however, where the symmetric product is
apparently always singular. As such, we resort to the heavier machinery of Hilbert schemes
and abandon the symmetric product awhile. We will return to it anon to see how the Hilbert
scheme compares to it.

2.2 Fun with the Hilbert functor

Let X be a projective k-scheme of finite type. For the more general setting, quasiprojectivity of
X does not suffice, but we shall see that the special case of the Hilbert scheme of points admits
this weaker condition. Define the functor

HilbX : Schk
opp −→ Set : S 7−→

{
Z ⊂ X×

k
S
∣∣∣∣ Z is a closed subscheme,

flat and proper over S

}
.

What HilbX does on morphisms is straightforward. Let f : S −→ T be a morphism of k-schemes.
Writing pri (with i = 1, 2) for the two natural projections from X× S, we know the outer square
in the diagram below is commutative because X× S is a fibred product and f is a morphism
of k-schemes. Hence h exists as indicated. One usually writes idX× f for this map.

X×
k

S

X×
k

T T

X Spec k

pr1

f ◦pr2

∃! h

Set HilbX( f ) : HilbX(T) −→ HilbX(S) : Z 7−→ (idX× f )−1(Z), which is well defined because
flatness, properness and closed immersions are stable under base change. The details are left
to the reader.

Let Z ∈ HilbX(S) and pick a closed immersion ι : Z ↪−→ X × S. Write π for the composition
pr2 ◦ ι and p := pr1 ◦ ι. Given a point s ∈ S(k), define the fibre over s by Zs := π−1(s). Let H
be a very ample (Cartier) divisor on X.
DEFINITION 2.2.1. We define the Hilbert polynomial of Z with respect to H on m ∈ Z to be

Ps(m) = χ

(
p∗OZ

∣∣
Zs
⊗
OX

O(mH)

)
.

Clearly, there is something to check here. First of all, because Z is flat over S, the ranks of
the cohomology modules involved are locally constant. Furthermore, s is a closed point; as
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such, Zs is closed in Z and can be given the structure of a subscheme. Since X is projective
over k, it is Noetherian and hence so is Z. Then the left tensor leg is coherent, as is O(mH),
being a line bundle. We conclude that their tensor product is a coherent OX-module by [Stacks,
Lemma 01CE]. Serre’s Theorem now implies all the cohomology modules of this sheaf are
of finite rank and but finitely many are nonzero, for instance by Grothendieck’s Vanishing
Theorem. We conclude that the Euler characteristic is finite and independent of the connected
component of s. Moreover, Ps defines a polynomial (with rational coefficients) by Snapper’s
Lemma (see [FGA, Theorem B.7]).

REMARK 2.2.2. For the reader familiar with Quot schemes: the functor HilbX is equivalently
described as the Quot functor QuotOX/X/ Spec k . We do not refer back to this fact, but the
interested reader may consult Section 5.1.3 in op. cit.

∗ ∗∗

All this has heretofore been rather general and abstract. We now move towards the case
of interest: the so-called Hilbert functor that classifies closed subschemes Z as above with
dim Z = 0, i.e., when Z consists of points. We shall do so by demanding that its Hilbert
polynomial be constant. The dependence on the fixed very ample divisor H is traditionally
omitted.

DEFINITION 2.2.3. Let X as prior and P ∈ Q[t]. Define the Hilbert functor HilbP
X to be the

subfunctor of HilbX that assigns to a k-scheme S the set

HilbP
X(S) := {Z ∈ HilbX(S) | Ps = P for all s ∈ S(k)}.

We now reconcile the construction with our earlier promise of allowing X to be quasiprojective.
If deg P = 0, then we see that dim Z = 0 is forced by the expression of Ps. As such, in that case
the Hilbert functor makes sense as well. We finally state the existence theorem, adapted from
[Groth61].

THEOREM 2.2.4 (Grothendieck, 1961). Let X be a projective k-scheme and P ∈ Q[t]. Then the
functor HilbP

X is representable by a projective k-scheme called the P-Hilbert scheme of X. Moreover, if
X is quasiprojective and deg P = 0, the Hilbert scheme exists as well, and is quasiprojective.

Proof. The original is in [ibid.], and can be found in ample detail in [FGA, Ch. 5 passim]. ���

REMARK 2.2.5. The functor HilbP
X is a closed and open subfunctor of HilbX and in fact the

latter is naturally a coproduct of the former. Therefore, given (quasi)projectiveness of X, the
functor HilbX itself is representable as well (as is QuotF/X/ Spec k for any coherent sheaf F on X,
cf. Remark 2.2.2), which was one of the original statements of Grothendieck. He derived this
from the case of Pn and the necessary condition of being a sheaf in the fpqc topology.

REMARK 2.2.6. All of the above can be repeated with any locally Noetherian scheme playing
the rôle of Spec k. More precise statements may be found in Göttsche’s Diplomarbeit [Gött88].
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The case in which we are interested is that of the constant polynomial P = n ∈N0.

DEFINITION 2.2.7. Let X be a quasiprojective k-scheme and n, a natural number. The nth

Hilbert scheme of points of X, henceforth called simply its Hilbert scheme, is the scheme
representing Hilbn

X, and denoted X[n].

This chapter started by introducing the symmetric product as a candidate for our desired
moduli space. If the Hilbert scheme is to remedy its smoothness issues, we should at the very
least demand that it is still a suitable moduli space. More precisely, we end this section by
verifying that the k-points of X[n] are indeed the closed subschemes of n points, ‘counted with
multiplicity’.

Let Z
j

↪−→ X = X × Spec k be a subscheme of length n supported at the closed points
{x1, . . . , xr}, where r 6 n. Define the multiplicity of a point xi ∈ Z by

ni := dimκ(xi)OZ,xi ,

where κ(xi) = k because the local ring of xi in Z must be a quotient of that in X, but the latter
has residue field k. It is automatically flat over k because all local rings are k-modules, and
properness follows from its being a coproduct of length-ni schemes supported at single points
xi. Pick closed immersions ιi : {xi} ↪−→ Z and notice that

OZ =
r⊕

i=1

Oi,

where we define the skyscraper sheaf Oi := ιi,∗O{xi}. It is then easily seen that for any m ∈ Z

j∗OZ ⊗O(mH) =
⊕

i

j∗Oi ⊗O(mH) =
⊕

i

j∗Oi = j∗OZ,

as O(mH) is a line bundle. Because dim Z = 0, the cohomology of the structure sheaf in
positive degree vanishes, and so

χ(j∗OZ) = h0(X, j∗OZ) = h0(Z,OZ) =
ÿ

i

dimkOi(xi) = n.

We conclude Z ∈ X[n](k). The interesting things happen when some of the multiplicities are
nontrivial (sc. r < n), as we shall see.

REMARK 2.2.8. We have completely omitted the universal property of Hilbert schemes that
appears in their construction (they are so-called fine moduli spaces), because we shall mainly
be interested in the closed points of the Hilbert schemes we shall study, rather than their
scheme-theoretic properties. It is therefore not obvious, but true, that X[0] = Spec k signifying
the empty subscheme of X, and X[1] = X, corresponding to the diagonal in X× X. Whilst the
bijection on closed points is plain, the isomorphism of schemes requires some work; the essay
[Oldfld, Chapter 4] provides a very accessible discussion for interested readers.

As a final comment, it is crucial to observe that for X = Spec R, where R is a k-algebra,

X[n](k) = {closed subschemes of X of length n} = {ideals of R of codimension n}

by the correspondence between closed subschemes and OX-ideals.
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2.3 Un pour tous, tous pour une dimension

It was proved at the beginning of this chapter that the symmetric product SnX preserves
smoothness of X precisely when dim X 6 1. One should then expect the Hilbert scheme of X
not to add any new information and this is indeed so.

LEMMA 2.3.1. If dim X = 1, then SnX ∼= X[n] for all n ∈N.

We illustrate this isomorphism by giving bijections on k-points in two examples: the affine and
projective lines. The full proof is postponed until later, when more tools are to hand.

EXAMPLE 2.3.2. Let X = A1. Because k[t] is a principal ideal domain, an ideal of codimension
n is determined by a polynomial of degree n and uniquely so by demanding that it be monic.
Because k = k, such a polynomial is completely described by its n roots in k, which are unique
up to reordering. We conclude that the points of X[n] are given by n-tuples of unordered points
(counted with multiplicity), which precisely equals the points of SnX.

The projective case is slightly more involved. Recall that any k[X0, X1]-ideal generated by a
homogeneous polynomial f of degree d > 0 is isomorphic to k[X0, X1](−d) as graded k[X0, X1]-
modules, the isomorphism being given by multiplication by f . Since the projective tilde is
exact, the OP1-ideal (̃ f ) obtained in this manner is isomorphic to the twisted sheaf O(−d).

EXAMPLE 2.3.3. Let X = P1 and let Z ∈ X[n](k) be a closed subscheme of length n with closed
immersion ι and ideal sheaf I ∼= O(m) for some m ∈ Z60. We claim that m = −n irrespective
of Z. Indeed,

n = dimk Γ(Z,OZ) = h0(X, ι∗OZ) = h0(X, OX
/
O(m) )

= h0(X,OX)− h0(X,O(m)) + h1(X,O(m))

= 1− (m + 1) = −m.

We used the standard short exact sequence

0 I OX ι∗OZ 0

and its long exact sequence of sheaf cohomology, as well as Serre duality for curves, to compute
χ(O(m)) (or see e.g. [Stacks, Lemma 01XT]). We also require the facts that X has genus 0 and
the Euler characteristic of a finite exact sequence of finite-dimensional k-modules vanishes.

We conclude that the closed subscheme Z depends entirely on the isomorphism I ∼= O(−n),
which stems from a homogeneous polynomial of degree n in k[X0, X1], up to nonzero scalar.
There are n + 1 independent monomials of that degree and f is determined uniquely by its
coefficients in those monomials. This argument therefore shows

(P1)
[n]
(k) = (kn+1 \ {0})

/
k× = Pn(k).

On the other hand, we have SnX = (P1)
n
/

Sn . Locally, (P1)n is covered by k[t1, . . . , tn], where

each ti is either Xi
Yi

or its inverse (up to scaling), with Xi, Yi local coordinates on the ith copy of
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P1. Taking Sn-invariants yields the same ring, as in the affine example. The k-points of a local
chart are described by morphisms of this polynomial ring to k. Globally then, a k-point is the
choice of n values in k together with a scalar (that was set to 1 in the chart), not all zero. We
conclude that SnX(k) = Pn(k).

2.4 Blowing up planes and the Hilbert–Chow morphism

We saw that k-points of X[n] are the closed subschemes of X comprising n points with multi-
plicity. In fact, such ‘multiple points’ were precisely the problem with the symmetric product:
the singular locus of SnX (with n > 1) is the diagonal ∆ ⊂ SnX, unless X happens to be a
smooth curve. The Hilbert scheme of a surface, by contrast, is smooth everywhere. More is
true, in fact: it resolves the singularities of the symmetric product. (We emphasise that this was
discovered after Grothendieck’s initially introducing Hilbert (and quot) schemes.)

Before moving on, it is helpful to visualise this by means of an example. We intend to show that(
A2)[2] ∼= Bl∆

(
(A2 ×A2)

/
S2
)
; the blowup of the symmetric square in all pairs of coinciding

points. Rather than proving the isomorphism to full rigour, we give a more intuitive idea.

EXAMPLE 2.4.1. Take A2 for simplicity, although the claimed result will actually hold for
any smooth surface. Let I ⊂ k[X, Y] be an ideal of codimension 2. The elements 1, X, Y
must be k-linearly dependent in the quotient, so either Y − a− bX ∈ I for some a, b ∈ k, or
X− a− bY ∈ I. We work out the first case; the second is completely analogous. Likewise, X2

is a linear combination of 1 and X in the quotient, which gives a monic quadratic polynomial
in X factorising as (X− c)(X− d) for some c, d ∈ k. We conclude that

I = ((X− c)(X− d), Y− a− bX).

After all, for any r ∈ I, write r as a polynomial in Y− a− bX with coefficients in k[X]. We must
have that (X − c)(X − d) divides the degree-zero part, which is indeed the case because its
reduction in k[X, Y]

/
I is trivial, but 1 and X are linearly independent there (I would be the

full ring were they not).

There are two cases to consider. If c 6= d, then

I = (X− c, Y− a− bX) ∩ (X− d, Y− a− bX) = (X− c, Y− a− bc) ∩ (X− d, Y− a− bd),

corresponding to the pair of distinct points ((c, a + bc), (d, a + bd)) ∈ A2 ×A2. It is clear that
for each pair of points on the affine plane with distinct X-coordinates, there exists some ideal
(and hence some constants a, b, c, d defining the relations as above) realising this pair.

If c = d, we have two points with equal X-coordinate c and Y-coordinate a+ bc, thus coinciding.
The quotient of the coordinate ring by I now contains an element X − x squaring to zero.
Consider the point p := (X− x, Y− y) ∈ A2. Since

TpA2 = { f ∈ Homk(Spec k[ε], A2) | f (pt) = p}
= { f ∈ Homk(k[X, Y], k[ε]) | f (X− x), f (Y− y) ∈ εk[ε]},
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we see that this ideal corresponds to a ‘two-fold point’ ((c, a + bc), (c, a + bc)) ∈ A2 ×A2,
viz. the point together with a tangent vector pointing in the given direction, which gives an
element of P1 accompanying it.

An alternative way of seeing this is by noticing that the quotient k[X, Y]
/

I is a two-dimensional
k-algebra, and hence isomorphic to either k2 or k[ε]. In the former case, an isomorphism can be
written as (ϕ1, ϕ2) and in the latter, as ψ0 + ψ1ε. The two points are then (ϕi(X), ϕi(Y)) ∈ A2

(for i = 1, 2) in the first case, necessarily different for the map to be surjective. Moreover, there
is a single nontrivial k-algebra automorphism of k2 given by swapping the factors, which
means that the points are interchangeable. In the other case, the isomorphism yields a point
(ψ0(X), ψ0(Y)) ∈ A2 together with a tangent vector (ψ1(X), ψ1(Y)) ∈ εk[ε] that is nontrivial by
surjectivity. This time, an automorphism of k[ε] is given by mapping ε to a nontrivial multiple
of itself, wherefore there is a k×-scaling.

Irrespective of the interpretation, both situations can be visualised as the line {Y = a + bX} in
A2(k) together with two points having X-coordinates c and d on it, or two points coinciding
along the direction of the line with a tangent vector, as in Figure 2.1.

Y = a + bX

X

Y

X = c

X = d

Y = a + bX

v

X

Y

X = c = d

Figure 2.1: A geometric visualisation of (A2)
[2] witnessing the blowup behaviour. Left: a

k-point of this scheme is given by two points of A2 together with the line con-
necting them. Right: the line ‘degenerates’ into a P1 when the points coincide.

Conversely, given a point p ∈ A2 and a tangent vector 0 6= v ∈ TpA2, we obtain an OA2-ideal
with global sections { f ∈ k[X, Y] = Γ(A2,OA2) | f ∈ p and dp f (v) = 0}. It has codimension
two, being wholly determined by the tangent vector v, which in turn corresponds to the kernel
of a surjective map to k[ε]. The corresponding subscheme of A2 is {p} as a set, but with length
2, and should be seen as two points that have collided head-on along the direction of v and are
now ‘infinitesimally attached’, as in the figure.

We will return to this (q.v. Example 4.2.7) and once more show the identification of
(
A2)[2]

with the blowup explicitly, this time using quiver representations. We now proceed with the
promised description of the Hilbert scheme of a smooth surface’s resolving the symmetric
product’s singularities.
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Again let Z ⊂ X be a subscheme of length n supported at {x1, . . . , xr} and let ni be the
multiplicity of xi. Introduce the cycle notation [Z] := ∑ nixi ∈ SnX.

PROPOSITION 2.4.2. For all n ∈N, there exists a morphism of k-schemes

ρ : X[n] −→ SnX

given on closed points by ρ(Z) = [Z]. Moreover, it is an isomorphism on ρ−1(SnX \ ∆) and hence
birational for surfaces. It is called the Hilbert–Chow morphism.

Proof. See [Lehn, §3.2 passim]. ���

EXAMPLE 2.4.3. In the situation of Example 2.4.1, the Hilbert–Chow morphism maps an ideal
corresponding to two distinct points x1, x2 ∈ A2 to x1 + x2 and the ideal corresponding to a
fat point x, to 2x.

For surfaces, the Hilbert–Chow morphism is birational, and so the concept of a Hilbert scheme
does not stray too far from that of the perhaps more intuitive symmetric product, morally
speaking. This was made precise by Fogarty, to whose results the final section is devoted.

2.5 Clearing the fog: articulating results

In order to prove Fogarty’s remarkable results on smoothness and irreducibility, we require
an explicit description of the tangent space at a closed point of a Hilbert scheme. We have the
following result of Grothendieck, its proof following that of [Lehn, Theorem 3.2].

PROPOSITION 2.5.1. Let X be quasiprojective over k and n ∈ N. Let Z ∈ X[n](k) and denote by I
the OX-ideal corresponding to the closed subscheme Z ⊂ X. Then there exists a natural isomorphism

TZX[n] ∼= HomOX (I ,OZ),

where we identify OZ with its direct image in X for convenience.

Proof. Write Xε := X ×k Spec k[ε] and note that X is naturally a closed subscheme of Xε, in
accordance with the diagram

X Spec k

Xε Spec k[ε]

X Spec k

∃! ι

idX

Spec(ε 7→ 0)

p

Moreover, OXε = OX ⊕ εOX because on affines of X, the structure sheaf of the fibred product
is just the tensor product with that of Spec k[ε], and this scheme is topologically a point.

Given a sheaf F of OX-modules, abuse notation and also write F for p∗F ⊗OXε
K, where K is

the constant sheaf k on Xε. This is unambiguous for us because the usual exact sequence

0 I OX OZ 0
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remains exact under the operation just described, since pullbacks are exact, and Z is flat over k
by definition of the Hilbert functor. From this and the exact sequence of k-modules

0 k k[ε] k 0ε

we obtain that the diagram

0 0

I I

0 OX OXε OX 0

OZ OZ

0 0

ε

has exact row and columns. Next, we see by definition of the Hilbert functor that

TZX[n] =
{

f ∈ Homk(Spec k[ε], X[n])
∣∣∣ f (pt) = Z

}
=

{
closed subschemes Y ⊂ Xε that are flat and proper

over k[ε] with ideal sheaf J such that ι∗J = I

}
= {ideal sheaves J ⊂ OXε such that (2.5.1) commutes and is exact} ,

where the last line refers to the diagram

0 0 0

0 I J I 0

0 OX OXε OX 0

0 OZ OXε

/
J OZ 0

0 0 0

ε (2.5.1)

To see this last equality, note that a closed subscheme Y gives an ideal J such that the diagram
commutes with exact rows and columns, in which the new arrows are the obvious pullbacks
and pushforwards along p and ι. Conversely, given J as in the diagram, it apparently pulls
back to I , and flatness of J and its quotient tantamount to the (known) flatness of I .

By commutativity, εI is contained in J for any such sheaf and so J is wholly determined by
the embedding of the quotient J /εI into OXε

/
εI . The former is isomorphic to I because the
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top row is exact and the top left square commutes, whilst the latter is of courseOX ⊕ εOZ using
the lower half of the diagram. Under these isomorphisms, we see that giving a tangent vector
to Z is equivalent to giving a morphism of OX-ideals I −→ OX ⊕ εOZ. The first component of
this morphism (using that this direct sum is canonically a direct product) is fixed by definition,
so we are left with a morphism I −→ OZ (which is multiplied by ε).

This establishes a functorial bijection as claimed and it is tedious to check but eminently
believable that it is k-linear. ���

Using this auxiliary result, we reap the rewards for introducing the seemingly complicated
Hilbert scheme over the symmetric product. The original statement may be found in [Fogarty].
THEOREM 2.5.2 (Fogarty, 1968). Let X be a quasiprojective k-surface and n ∈N. Then the following
statements hold.

(i) If X is connected, X[n] is connected.

(ii) If X is smooth, X[n] is smooth.

(iii) The dimension of X[n] is 2n.

(iv) The Hilbert–Chow morphism ρ : X[n] −→ SnX is a crepant resolution of singularities.

Proof. Proving connectedness requires more advanced techniques than have we to hand, so
we refer to [FGA, Lemma 7.2.1] or [Lehn, Lemma 3.7]. We likewise do not prove point (iv), as
the proof makes use of properties of Hilbert schemes that we have not treated; it be found in
[Nakaj99, Theorem 1.15] (for the resolution’s being crepant, see [FGA, Remark 7.3.5]). Instead
we focus on smoothness and dimension, which results are most pertinent to our endeavours.

Let Z ∈ X[n](k) with ideal sheaf I and closed immersion ι : Z ↪−→ X. We wish to compute

dimk TZX[n] = dimk HomOX (I , ι∗OZ).

Applying ExtOX (−, ι∗OZ) to the usual short exact sequence, we obtain the long exact sequence
of k-modules (see [Harts, Prop. III.6.4])

0 HomOX (ι∗OZ, ι∗OZ) HomOX (OX, ι∗OZ) HomOX (I , ι∗OZ)

Ext1
OX

(ι∗OZ, ι∗OZ) Ext1
OX

(OX, ι∗OZ) · · ·

First of all, the sequence terminates at the given point: we claim that Ext1
OX

(OX, ι∗OZ) = 0.
Indeed, by [ibid., Prop. III.6.3(c)], we see

Ext1
OX

(OX, ι∗OZ) ∼= H1(X, ι∗OZ) ∼= H1(Z,OZ) = 0.

Recall that for each OZ-module F and OX-module G, we have a natural isomorphism of
OX-modules (obtained from the pullback-pushforward adjunction on each open)

ι∗HomOZ(ι
∗G,F ) ∼= HomOX (G, ι∗F ).

20



In particular, this gives us

ι∗OZ = ι∗HomOZ(OZ,OZ) = ι∗HomOZ(ι
∗ι∗OZ,OZ) ∼= HomOX (ι∗OZ, ι∗OZ).

The first identification is true because OZ is the trivial line bundle on Z. The second is
because the adjunction gives a natural co-unit map ι∗ι∗OZ −→ OZ, and one can easily
check it induces isomorphism on stalks using the observation that for all x ∈ Z we have
(ι−1ι∗OZ)x = (ι∗OZ)ι(x) = OZ,x.

Moreover, Hom(OX, ι∗OZ) = ι∗OZ by [ibid., Prop. III.6.3(a)].[2] Tracing all of these natural
isomorphisms and taking global sections shows that the first map in the long exact sequence is
an isomorphism, meaning the snake map must likewise be.

Consequently, TZX[n] ∼= HomOX (I , ι∗OZ) ∼= Ext1
OX

(ι∗OZ, ι∗OZ) so it suffices to determine
the dimension of this Ext-space. We shall do so using Hirzebruch–Riemann–Roch. By Serre
duality[3] we know Ext2

OX
(ι∗OZ, ι∗OZ) ∼= H0(X, ι∗OZ ⊗O(KX))

∗ and the latter has dimension
h0(X, ι∗OZ) = n because of [ibid., Exc. III.8.3 (i = 0)] and the fact that ι∗O(KX) is trivial, being
the pullback of a locally free sheaf. The higher Ext-groups vanish because X is a surface.

Hirzebruch–Riemann–Roch states that the alternating sum of the Ext-spaces’ dimensions is

χ(ι∗OZ, ι∗OZ) = n− dimk TZX[n] + n =
∫

X
ch∗(ι∗OZ)ch(ι∗OZ)td(X) = 0,

the integral vanishing because codimXZ = 2. Thus the tangent space has dimension 2n.

We now irresponsibly curtail the proof by stating that the open dense set ρ−1(SnX \ ∆) of
subschemes consisting of n distinct points is smooth (since ∆ was precisely the singular locus
of the symmetric product and ρ is an isomorphism outside this locus) of dimension 2n.

Connectedness of X[n] now implies that it is smooth of dimension 2n, since this is the dimension
of all tangent spaces on a dense open of the underlying variety (see e.g. [ibid., Ex. 10.0.3]). We
may thus also conclude that X[n] is irreducible. ���

It is easy to prove Lemma 2.3.1 using the results we have acquired.

COROLLARY 2.5.3. Let X be a smooth curve. Then ρ is an isomorphism for all n.

Proof. Let x ∈ X(k) be a closed point. Then the stalk OX,x is a discrete valuation ring because
X is smooth and one-dimensional. Every ideal in the stalk is therefore a power of mx.

Consider a closed subscheme Y
ι

↪−→ X of length m supported only at x. The stalk of its ideal
sheaf must be an OX,x-ideal, say m`

x. Then

m = dimk Γ(Y,OY) = dimk Γ(X, ι∗OY) = dimk OX,x

/
m`

x = `.

[2]It also follows directly from the definition of pullback, for naturally ι∗OX = ι−1OX ⊗
ι−1OX

OZ = OZ.

[3]Because ι∗OZ is coherent but not locally free, the statement is more subtle than is the one given in
[ibid., Thm. III.7.6(a)]. It follows by taking locally free resolutions and applying the theorem in Hartshorne
toHom(ι∗OZ, ι∗OZ).
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We used that the global sections of a skyscraper sheaf are precisely its nonzero stalk. Now, for
Z ∈ X[n](k), its structure sheaf must therefore be

OZ =
⊕
xi∈Z

OX,xi

/
mni

xi
such that

ÿ

ni = n,

because Z is discrete.

It is therefore plain that ρ is bijective. It is also birational. Moreover, SnX is smooth, hence
normal. Zariski’s Main Theorem then implies that ρ is an isomorphism. ���
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[...] undique cum vorsum spatium vacet infinitum seminaque
innumero numero summaque profunda multimodis volitent
aeterno percita motu [...]

— TITUS LUCRETIUS CARUS (ca. 99–ca. 55),
De Rerum Natura, book two.

3YANG–MILLS THEORY AND S-DUALITY

H
AVING dealt with the basic properties of Hilbert schemes, the present chapter delves
into physics and has two main goals: the first is to recall the concept of Yang–Mills
theory and its instanton solutions as well as the famous ADHM construction of such

instantons on R4, as a preparation for the more intricate instanton spaces due to appear in string
theory in a forthcoming chapter. The second, to thoroughly examine the article [VafaWitten]
mentioned in the Introduction.

Ere we introduce instantons, we remind the reader of Yang–Mills theory in general. We then
discuss the Montonen–Olive duality conjectured to arise in supersymmetric Yang–Mills theory,
and explain how it should appear. We assume familiarity with supersymmetry as treated in
Appendix A.3, as well as A.4.2.

3.1 Yarking the Machinery of gauge theories

This section is mostly aimed at a mathematical audience, as the author assumes physicists are
very familiar with the matter. The reader should be accustomed to the content of Appendix
A.2.1.

Let X be a compact, orientable smooth manifold. Fix G to be a compact, real Lie group with
Lie algebra g.

Let π : P −→ X be a principal fibre bundle with structure group G. Recall this is a surjective
submersion with typical fibres X carrying a simply transitive, smooth right G-action, locally
trivial in the usual sense. We recall the definition of a connection on a principal G-bundle for
the reader’s convenience. Consider this sequence of vector bundles over the manifold P:

0 g× P TP π∗TX 0ι dπ (3.1.1)

Here g× P −→ P is a vector bundle given by projection onto the second component. The
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morphism of vector bundles ι is defined pointwise as follows. For p ∈ P we set

ιp : g −→ TpP : x 7−→ d
dt

∣∣∣∣
t=0

p · exp(tx),

where exp : g −→ G is the exponential map and the dot denotes the G-action on P. This is
obviously a morphism of vector bundles, and the terminology is that it produces vector fields
associated to elements of the Lie algebra.

LEMMA 3.1.1. The sequence (3.1.1) is short exact.

Proof. The map ι is pointwise injective, for the fibrewise G-action on P is by assumption free:
if the vector field associated to x ∈ g fixes p, then exp(x) must be the neutral element of G,
whence we derive that x = 0 since exp is locally a diffeomorphism.

By assumption on π, we know (dπ)p : TpP −→ Tπ(p)X is surjective, and (dπ)p(ιp(x)) = 0
because the vector fields in the image of ι act fibrewise and π collapses these fibres by definition.
Conversely, anything in the kernel of (dπ)p comes from the image of ι because these fibrewise
actions are transitive. ���

Upgrade (3.1.1) to a short exact sequence of G-modules. If R : P×G −→ P : (p, g) 7−→ Rg p :=
p · g denotes the right G-action on P, we define G-actions on the vector bundles above as
follows. Let g ∈ G. On g× P it acts as Adg×Rg. This makes ι equivariant, for we identify g

with the left invariant vector fields on G. Unsurprisingly, g acts on TP by dRg. The action on
π∗TX is not interesting, so take the trivial one.

We are now ready to state the definition of a connection, more or less as a retraction splitting
the sequence defined above.

DEFINITION 3.1.2. A connection on P is a g-valued 1-form A ∈ Ω1(P, g) = Γ(P,T∗P⊗ g) that
splits the sequence (3.1.1) of G-modules. Concretely, it must satisfy

(i) for all x ∈ g and p ∈ P, one has A(ι(x)) = x, and

(ii) for all g ∈ G, it holds that R∗g A = Adg−1 A, both understood pointwise.

We proceed to define the curvature of such a connection. Let Ad(P) be the vector bundle
associated to the adjoint representation Ad: G −→ GL(g) of G. That is, Ad(P) = (P× g)

/
G

(often written P×G g) with right action given by

(p, x) · g = (p · g, Adg−1 x), where g ∈ G, p ∈ P and x ∈ g,

and projection Ad(P) −→ X given by [(p, x)] 7−→ π(p). This is well defined, because G acts
fibrewise on P. Moreover, this vector bundle has typical fibre g because this action is transitive.
Pick explicit isomorphisms αp : Ad(P)p

∼−→ g at each point. It is not hard to see that different
choices will differ by the (right) G-action given by the pointwise inverse of Ad. The quantity in
which we are interested shall be an invariant polynomial on g that is by definition insensitive
to this action, so the choices made do no harm.
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Recall the Lie bracket on g-valued 1-forms is given as follows. If p ∈ P has local coordinates
x1, . . . , xn in a neighbourhood and we write ω = ∑i ωidxi ⊗ yi as a finite linear combination of
pure tensors, where ωi ∈ C∞(P) and yi ∈ g, and similarly η = ∑j ηjdxj ⊗ zj, then locally at p,

[ω, η] =
ÿ

i,j

ωiηjdxi ∧ dxj ⊗ [yi, zj].

The definition is now as follows.

DEFINITION 3.1.3. Let A ∈ Ω1(P, g) be a connection. Its curvature is the g-valued 2-form

FA = dA +
1
2
[A, A].

Concretely, at each point p ∈ P, and for any two tangent vectors X, Y ∈ TpP, we have

(FA)p(X, Y) = (dA)p(X, Y) + [Ap(X), Ap(Y)] ∈ g.

The map π : P −→ X defines a pullback on differential forms by

π∗ : Ω2(X, Ad(P)) −→ Ω2(P, g) : ω 7−→ π∗ω,

where for p ∈ P and X, Y ∈ TpP, we set (π∗ω)p(X, Y) := αp(ωπ(p)(X, Y)). In fact, the
curvature of a connection lies in the image of this map.

DEFINITION 3.1.4. Let (V, π) be a representation of a Lie group G. A form η ∈ Ω`(P, V) is
called basic if

(i) for all g ∈ G, one has R∗gη = π−1
g η, and

(ii) for all x ∈ g, the (`− 1)-form ι(x) y η is zero.

One can easily show that the basic forms in Ω2(P, V) form a subspace that is canonically
isomorphic to Ω2(X, E(P, V)) where E(P, V) is the vector bundle associated to the fibre bundle
P and the representation V. In particular, Ω2

bas(P, g) ∼= Ω2(X, Ad(P)). Here is the purpose of
this digression.

LEMMA 3.1.5. If A is a connection on P, then FA is basic.

Proof. Let g ∈ G. Then

R∗gd(A) = dR∗g A = dAdg−1 A = Adg−1 dA

because exterior derivative commutes with pullback. Furthermore,

R∗g[A, A] = [R∗g A, R∗g A] = [Adg−1 A, Adg−1 A] = Adg−1 [A, A],

where the first equality is obvious from the definition and the last equality is the elementary
fact that Ad distributes over the Lie bracket.

Next, consider x ∈ g and let gt = exp(tx) ∈ G. Applying the t-derivative at t = 0 to the
equation R∗gt

A = Adg−1
t

A, we get Lι(x)A = −[x, A], where the left-hand side is a Lie derivative.
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The appearance of x in the bracket on the right is to be understood as a constant vector field.
By Cartan’s magic formula,

−[x, A] = d(A(ι(x))) + ι(x) y dA = dx + ι(x) y dA = ι(x) y dA,

where again x is interpreted as constant vector field. Now then, using the definition of the
bracket of forms and the fact that A(ι(x)) = x, we see

ι(x) y FA = ι(x) y dA + ι(x) y 1
2
[A, A] = −[x, A] +

1
2
([x, A]− [A, x]) = 0. ���

It now follows that every element of Ω2(P, g) that is the curvature FA of some connection A
on P can be written as π∗F for a unique form F ∈ Ω2(X, Ad(P)). We henceforth (canonically)
identify a curvature FA with this F.

∗ ∗∗

To define the Yang–Mills action, we need two more ingredients: the Hodge star operator, and
some bilinear form on g to turn g-valued forms into ordinary ones. Suppose henceforth X is a
Riemannian manifold.

If dim X = n, write ? : Ω•(X) −→ Ωn−•(X) for the Hodge star on X. By slight abuse of
notation, we also write ? for the corresponding operator on Ad(P)-valued forms on X, defined
pointwise by ?⊗ idAd(P).

Next, let κ : g × g −→ R : (x, y) 7−→ Trgl(g)(adx · ady) be the Killing form. Recall that we
require the final Lagrangian to be Ad-invariant to ensure our choices of αp do not matter. The
Killing form seems to be good candidate, since we know

κ(Adg x, Adg y) = κ(x, y) for all g ∈ G and x, y ∈ g.

Unfortunately, there is an apparent predicament. Because G is compact, we know g is reductive
— meaning its centre equals its radical — and κ is negative-semidefinite. If g is not semisimple,
however, κ is degenerate. This means it cannot be used to turn g-valued forms into ordinary
forms to be integrated as the Yang–Mills action.

For example, degeneracy of the Killing form poses a rather pressing problem for Maxwell
theory, which is a Yang–Mills gauge theory with abelian structure group U(1): namely, the
Maxwellian action would be identically zero. Since chances are light has, in fact, not promptly
vanished in a Hitch Hiker-esque puff of logic, something else must be done. The solution is
surprisingly simple, even if the Lie algebra is not. For details on the results used, see [Kirill].

PROPOSITION 3.1.6. Let g be the reductive Lie algebra of a compact real Lie group G. There exists a
symmetric, Ad-invariant, positive-definite bilinear form on g.

Proof. Consider a Levi decomposition g = s⊕ z, where s is a semisimple Lie subalgebra and
z is the centre of g. By Cartan’s criterion, we know that κ

∣∣
s×s is negative-definite. Of course

κ
∣∣
z×g = 0 so the decomposition is orthogonal with respect to the Killing form.
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Pick any inner product (−,−) on the vector space z. Recall there exists a canonical Haar
measure dg on G. Hence, we may define the bilinear form

κ̃ : (s⊕ z)× (s⊕ z) −→ R : (s + z, s′ + z′) 7−→ −κ(s, s′) +
∫

G
(Adg z, Adg z′)dg.

The minus sign is to make the form positive-definite. Observe that z = ker ad is indeed a
subrepresentation of Ad, since for all g ∈ G and z ∈ z, we have for all x ∈ g that

adAdg z x = [Adg z, Adg Adg−1 x] = Adg[z, Adg−1 x] = 0.

It is evident that κ̃ possesses the desired properties. ���

JOKE 3.1.7. Waarom ging de wiskundige in een dameskledingzaak werken?
Hij vroeg elke klant wat Haarmaten zijn.

We henceforth fix this form κ̃ on g. Consider two Ad(P)-valued differential forms ω, η on
X of degrees k and `, respectively. Write ω as pointwise linear combination of pure tensors
(identifying the fibres of Ad(P) with g using the α’s);

ω =
ÿ

i

ω̃i ⊗ yi, for ω̃i ∈ Ωk(X) and yi ∈ g.

The summation is of course finite and understood pointwise. Similarly, write η = ∑j η̃j ⊗ zj.
Then we define a bilinear form B by

Ωk(X, Ad(P))×Ω`(X, Ad(P)) −→ Ωk+`(X) : (ω, η) 7−→ B(ω, η) :=
ÿ

i,j

κ̃(yi, zj)ω̃i ∧ η̃j,

with same notation as prior. It is plain that this is well defined. Moreover, B is graded symmetric,
bilinear and Ad-invariant. If k + ` = n, we obtain an (ordinary) differential form that can be
integrated over X. This integral is the action for Yang–Mills theory.
DEFINITION 3.1.8. With setup ut supra, the Yang–Mills action with structure group G associ-
ated to a connection A on P with curvature F is

S = SYM(A) =
∫

X
B(F, ?F).

Some remarks are in order.

REMARK 3.1.9.

(1) By the fact that B is Ad-invariant and the earlier observation that F transforms under G
via (the pointwise inverse of) Ad, it is immediate that the action is fixed by the induced
G-action corresponding to different choices of fibre identifications αp. We say the theory
is gauge invariant.

More precisely, the gauge group G := AutG(P) acts by pullback on the set of connections
of P — these maps are called gauge transformations. Explicitly, for ϕ ∈ G, one has

ϕ · A = ϕ−1Aϕ + ϕ−1 dϕ.
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It is straightforwardly shown that Fϕ·A = ϕ−1Fϕ, thus leaving the action invariant. It
should be remarked that physicists instead call the structure group G itself the gauge
group of the theory.

(2) The action above is merely a bare-bones structure. To be physical, it first of all needs
units, although coupling constants and such do not matter for the equations of motion,
of course, which we shall consider shortly. The expression given in Definition 3.1.8 is the
defining component of a Yang–Mills Lagrangian, and the curvature of the connection is
called the field strength of the gauge field, respectively.

Moreover, this is but one term of the action; there could be, and generally are, a potential
and a kinetic term involving covariant derivatives of the quantum fields under consider-
ation. The square of the covariant derivative of the gauge field forms the kinetic term in
the action, for instance. On a 4-manifold, there could be a so-called topological term of the
same form as the Yang–Mills Lagrangian, but without the Hodge star. This integral is
in fact independent of the connection chosen and has trivial dynamics; its value is the
second Chern class of the bundle, and we encounter it in the next section.

It is instructive to briefly consider the aforementioned easy case of Maxwell theory.

EXAMPLE 3.1.10. Let X = S4 and P = X×G the trivial bundle with structure group G = U(1).
Of course u(1) = iR ∼= R is abelian, and we equip it with the inner product given by
multiplication. Then Ad(P) = (P× u(1))

/
U(1) is rather simple. The adjoint representation

is trivial, and U(1) acts on P by right multiplication on G. Therefore Ad(P) = X× u(1) is the
trivial bundle.

The curvature F becomes an ordinary 2-form on X. This is precisely why the usual Lagrangian
for Maxwell theory in this setting is simply F ∧ ?F. The equations of motion are dF = 0, which
is just the Bianchi identity in this simple case, and d?F = 0. The gauge field here is Aµ, also
known as the four-potential, and its curvature Fµν is the electromagnetic field strength tensor.
The coupling constant is the familiar elementary charge e. Unravelling the two equations of
motion explicitly yields the classical Maxwell equations.

It is well known that classical Maxwell theory possesses a curious duality exchanging electric
and magnetic charges. It tantamounts to the inversion of the corresponding charges and swap-
ping electric and magnetic monopoles. As described in the Introduction, this was formulated
as a conjectured duality for supersymmetric Yang–Mills theories by Montonen and Olive in
1977, and subsequently refined by a number of physicists, amongst whom Witten. We shall
spend some time examining this phenomenon.

3.2 The ABC of UVW: understanding Vafa and Witten

Consider the situation as prior. As already announced, Vafa and Witten studied N = 4
supersymmetric (see Appendix A.3 for the basics of supersymmetry) Yang–Mills theory on a
real fourfold. Montonen and Olive conjectured [MontOlive] that this theory have an involutive
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symmetry acting by

g 7−→ 1
g

and G 7−→ LG,

with g the coupling constant and LG the Langlands dual, or L-group, of the structure group G.

The first transformation is manifestly an exchange between strong and weak coupling. This
is remarkable; proving this conjecture — which goes by the modern name of S-duality,[1] the
S standing for ‘strong-weak’ — would show that the gauge theory in question exists at both
low and high energy scales without having to employ perturbation theory and praying that
expansions in g converge.

The action on the structure group introducing its L-group is profound and it goes beyond the
scope of this thesis to provide a full account of the connections between these physical theories
and the geometric Langlands programme. The (extensive) article [KapuWitten] by Kapustin
and Witten explores the subject from a physical point of view. Frenkel’s lecture [Frenkel] from
a Séminaire Bourbaki is an ample, more mathematical account.

3.2.1 All hands on Langlands!

We limit ourselves to reminding the reader of the definition of the L-group and identifying it
for G = SU(k), for that will be the structure group in our applications, before moving on with
the actual content of Vafa and Witten’s article on S-duality. Our treatment is very abridged and
perhaps seemingly occult to the uninitiated.

For details on the rational structures and Galois cohomology involved, we recommend [Malon]
and the books [Milne, Chapter 27] and [Serre].

We commence with the easiest case of algebraically closed fields. Let G be a connected, reduc-
tive algebraic group scheme over an algebraically closed field F in characteristic zero and fix a
Borel subgroup as well as a maximal F-torus T therein. As usual, the Lie algebra of G is

g = ker
(
G(F[ε]) −→ G(F)

)
,

the map being induced by F[ε] −→ F : ε 7−→ 0. We associate a finite set of roots Φ to the pair
(G, T) comprising those characters α ∈ X∗(T) = Hom(T, Gm) for which the root space

gα = {X ∈ g | Adt X = α(t)X for all t ∈ T(k)}

is nontrivial. (Gm = GL1 denotes the group of units.) In the usual manner we obtain a root
datum (X∗(T), X∗(T), Φ, Φ∨) from the reduced root system (Φ, 〈Φ〉 ⊗Z R), with the natural
perfect pairing between the characters X∗(T) and the cocharacters X∗(T) = Hom(Gm, T).
Recall Chevalley–Demazure’s Theorem saying that, over an algebraically closed field, this
assignment exhibits a bijection between isomorphism classes of connected reductive groups

[1]One should remark that S-duality has many more incarnations in string and M-theory than this. In this thesis,
the term shall withal refer exclusively to Montonen–Olive duality in the present setting.
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over F and those of reduced root data. Denote by Ĝ the complex dual of G, being (a repre-
sentative of the isomorphism class of) the complex reductive group associated to the dual
(X∗(T), X∗(T), Φ∨, Φ) of the root datum associated to G itself.

Furthermore, let (X∗(T), X∗(T), ∆, ∆∨) be the corresponding based root datum of G, i.e., ∆ ⊂ Φ
is a maximal set of simple roots. Under the Chevalley–Demazure correspondence, choosing ∆
translates to choosing a Borel subgroup of G. For a simple root α ∈ ∆, there is a map

expα : gα −→ G(C),

whose image we denote Uα; one can show that the Borel subgroups of G are generated by the
torus T and these Uα. Recall that a pinning of G is the choice of a Borel subgroup, a maximal
torus therein, and a family of nontrivial elements uα ∈ Uα for all α ∈ ∆, such that ∆ corresponds
to the Borel subgroup.

In general, F will not be algebraically closed, however. The strategy in that case is to view G,
a group over F, as a ‘form’ (to be defined anon) inside the base change GF to the algebraic
closure via the action of the absolute Galois group of F. (In the example relevant to us, we will
have F = R.)

∗ ∗∗

If F is not algebraically closed, let Γ := Gal(F/F) be its Galois group. Write Aut(G) for the
algebraic group (scheme) automorphisms of G (viz. those automorphisms that respect regularity
of functions on G under pullback) and Aut(G(F)), for the group automorphisms of its points
over the closure of F. The Galois action of Γ on F induces an action of Γ on G(F), denoted σ0. It
is known as the standard split structure of G over F. The fixed points under σ0 are called the
standard split form.

Unfortunately, the G(F)-automorphisms given by σ0 are not algebraic. This motivates the
following definition. If σ is another Γ-action on G, then the map (not a homomorphism)

α : Γ −→ Aut(GF) : γ 7−→ σ(γ) ◦ σ0(γ)
−1

does define algebraic automorphisms of the base change. As such, an F-rational structure on
G is defined to be a Γ-action σ on G(F) of the form σ(γ) = α(γ) ◦ σ0(γ) (where γ ∈ Γ) for
some map α as above. For the result to define an action, one may check that α should be a
1-cocycle (in the framework of noncommutative group cohomology) with respect to the action
of Γ on Aut(GF) given by conjugation. Therefore, an F-rational structure is the choice of a
Galois 1-cocycle with values in Aut(GF) and two structures are called equivalent if they are
cohomologous.

In other words, an equivalence class of F-rational structures is a Galois cohomology class
α ∈ H1(F, Aut(GF)) = H1(Γ, Aut(GF)). This cohomology set turns out to precisely classify
algebraic groups over F whose base changes to F are GF, up to isomorphism (cf. [Milne,
Corollary b.27.16]).
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It turns out that the invariants in GF under two actions (i.e., two Galois cocycles) define the
same L-group precisely when these cocycles differ (in the multiplicative, compositional sense)
by a cohomology class of Γ with coefficients in Inn(GF), the algebraic inner automorphisms of
GF, essentially because the Galois action on the complex dual of G is by outer automorphisms,
thus ignoring these so-called inner twists. These invariant subgroups are called the F-forms
corresponding to the chosen rational structures. They become isomorphic to G upon base
change to F. This is the correct way of interpreting reductive groups over fields that are
not algebraically closed: as Galois-fixed forms of groups over fields that are. Moreover, a
form is itself called inner if the corresponding Galois cohomology class lies in the image of
H1(F, Inn(GF)).

∗ ∗∗

Let us return to the initial setting, with F not necessarily algebraically closed. Fix a Borel
subgroup and a maximal torus T inside for the base change GF. Now, suppose α is a quasi-split
F-form of G — meaning it contains a Borel subgroup defined over F itself —, defined up to
inner automorphisms. It is a nontrivial but true statement that the sequence of groups

1 Inn(GF) Aut(GF) Aut(X∗(T), X∗(T), ∆, ∆∨) 1 (3.2.1)

is short exact. We obtain a short exact sequence of nonabelian Γ-modules by letting the Galois
group act trivially on the root datum automorphisms (also called the diagram automorphisms,
referring to the Dynkin diagram of the root system). The first cohomology of Γ with values
in this latter group is then simply the group Hom-set. After fixing a pinning, a 1-cocycle
class (i.e., group homomorphism) valued in Aut(X∗(T), X∗(T), ∆, ∆∨) can then be lifted along
the pushforward of the surjection in (3.2.1). This determines a class of F-forms (up to inner
automorphisms) whose pushforward to the diagram automorphisms returns the initial cocycle;
the concrete formulæ may be found in [Malon, Eqn. (1.4), (1.5)].

The dual based root datum gives rise to the complex dual Ĝ, a connected reductive group now
defined over C. The analogue of (3.2.1) for the complex dual (and a maximal torus inside a
Borel subgroup thereof) instead of GF can also be viewed as a sequence of Γ-modules, whereby
the Galois action is trivial everywhere. We can perform the same lifting procedure of 1-cocycles
as above, but now this constitutes an actual splitting of the sequence (viz. a section), for the
1-cocycles are again nothing but the group homomorphisms.

Starting with the quasi-split F-form α of G, the pushforward of the surjection in (3.2.1) com-
posed with the transposition morphism between (automorphisms of) the based root datum
and its dual produces a 1-cocycle (i.e., homomorphism) of Γ with values in the automorphisms
of the dual root datum. By the pinning of Ĝ and the procedure described in the previous
paragraph, this can be lifted to α̂ : Γ −→ Aut(Ĝ), unique up to inner automorphisms.

We may in principle now define the L-group of an F-form of G. In practice, it is often more
convenient to use its so-called finite form, which still carries the same information but replaces

31



the profinite group Γ by a more manageable, finite quotient thereof. To do so, fix a maximal
F-torus T′ of G, possible by connectedness (see [Humph, Thm. 34.4(a)]). Moreover, [ibid.,
Thm. 34.4(b)] guarantees the existence of a finite field extension E/F such that the base
changed torus T′E splits over E. We fix such a splitting field E.
DEFINITION 3.2.1. The L-group of an F-rational form α of a connected, reductive algebraic
group G over F is the semidirect product

LG = Ĝ(C)o Gal(E/F)

with the action determined by α̂ descended to Gal(E/F).

We want to do this for the group SLk over F = R, with k > 2. The split form corresponding to
the complex conjugation action of Gal(C/R) = {id, c} is of course SLk(R); we require one of
the other real forms of SLk/C , namely SU(k).

The Galois action we need to consider is simultaneous Hermitian conjugation and inversion, for
which the special unitary matrices are precisely the fixed points. This yields the real structure

α : Gal(C/R) −→ Aut(SLk)(C),

c 7−→
[

X 7−→
(
X:
)−1
]
◦
[
X 7−→ X

]−1
=
[

X 7−→
(
X>
)−1
]

.
(3.2.2)

It is nonsplit except when k = 2, when all algebraic automorphisms of SL2 are inner, such that
both real (inner) forms SU(2) and SL2(R) define the same L-group.

∗ ∗∗

We give a brief excursus on the real forms in general. By Théorème 6 and the subsequent
two examples in [Serre, §III.4.5] (caveat lector, for Serre’s notation is different from ours), the
real forms of SLk are in bijection with the orbits under the Weyl group of the involutive inner
automorphisms in the torus of PUk = Inn(SUk), cf. [Milne, Cor. e.27.61]. One has to be careful
in using this result, however, for connectedness of the automorphism group of SLk is no longer
true if k > 2. One must therefore distinguish the connected components of the group and
moreover discriminate between the inner and outer forms.

The result (cf. [ibid., Thm. d.27.41 & d.27.42]) is that the real outer forms correspond to choosing
0 6 p 6 k signs independently, up to a global sign (i.e., p minus signs are equivalent to n− p
minus signs). The Weyl group acts by permuting these signs. This leads in general to the inner
forms SU(p, k− p) of SLk, and to SU(k) for p = 0. There are one or two inner forms in the other
connected component, depending on the parity of k. One is of course the split form SLk(R); if
k is even, there is a second, namely SLk/2(H).[2] (In the formulation of the theorems in loc. cit.,
the quaternions H give rise the nontrivial element of the Brauer group of R.)

Let us return to the ‘physical’ situation and compute the L-group for the real form SU(k).

[2]For k = 2, the group SU(1, 1) is isomorphic to the split form and SU(2) itself is well known to be isomorphic
to the unit quaternions.
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EXAMPLE 3.2.2. Since the root system of SLk is Ak−1, write ∆ = {α1, . . . , αk−1}. The real
structure α in Equation (3.2.2) gives an automorphism of the root datum by cohomological
pushforward as described previously. A priori, what it does on simple roots is αi 7−→ −αi,
which obviously lands in −∆ rather than ∆. We must act by an inner automorphism (which
lies in the kernel of the pushforward) to rectify this.

Because α maps the upper triangular matrices (these constituting the Borel subgroup up
to conjugacy) to the lower triangular ones, the choice is obvious; conjugate with the anti-
diagonal permutation matrix. (This corresponds to the so-called longest Weyl group element,
which in this case mirrors the corresponding Dynkin diagram.) The composition thus maps
αi 7−→ αk−1−i. We therefore see that the nontrivial element c ∈ Gal(C/R) acts on coroots by
α∨i 7−→ α∨k−1−i.

We conclude that the resulting L-group is LSU(k) = PGLk(C) o Gal(C/R) with action as
described, having used that ŜLk = PGLk.

REMARK 3.2.3. In [KapuWitten] and [VafaWitten], the authors used LSU(k) = PSU(k) = PU(k).
We stress that this is not an accurate statement. What is true in the rank-two case is that
the compact real form SU(2) and the split real form SL2(R) of SL2 over C have the same
L-group. Being a complex group, this L-group has a unique compact real form, which is
SO(3) ∼= SU(2)

/
(Z/2Z) = PSU(2), as claimed.

It is yet unclear to us what the physical interpretation of the L-group is. For the purposes of
Yang–Mills theory, it should of course be a compact real Lie group, meaning the S-duality
transformation cannot produce the L-group on the nose without further modifications. For
ranks k > 2 the above coincidence does not occur (SLk does have outer automorphisms) and
we therefore regrettably do not understand what the physicists mean by LSU(k).

3.2.2 Introducing the θ angle

In the 1980s, physicists deduced that Montonen and Olive’s conjectured symmetry naturally
extends to an action of SL2(Z) by incorporating the so-called theta angle into the theory. The
brief explanation is as follows. Suppose G is simple (meaning its Lie algebra g is a simple
(real) Lie algebra, as is the case for su(k), excepting the abelian case k = 1 which is of scant
physical interest anyway, q.v. Proposition 3.2.5) and simply connected (which SU(k) is). Then
it is known that for this maximally supersymmetric theory (i.e., N = 4) the action

SYM =
1
g2

∫
X

B(F, ?F) + kinetic and interaction terms
of scant relevance at present

is unique if one demands that the Lagrangian be quadratic in the fields’ derivatives, up to a
topological term

Sθ =
iθ

8π2

∫
X

B(F, F)

that only makes sense if X is a fourfold. It is called topological because its value is simply iθ
times the second Chern class of the principal G-bundle, which is a topological invariant. It will
return in the next section when instantons are discussed.
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These two parameters are combined into the complex coupling constant

τ :=
θ

2π
+

4πi
g2 .

It is evident that τ ∈ H, thus admitting an SL2(Z)-action by fractional linear transformations.
The conjecture, known in modern language as S-duality, is that the physics be invariant under
this action on τ. This has deep string theoretic implications; we assumed X to be compact,
but its volume is arbitrary. Therefore it stands to reason that the S-duality originate from a
symmetry of the uncompactified theory, and hence that it be present in any compactification.

Recall that SL2(Z) is generated by the two fractional linear transformations T : τ 7−→ τ + 1
and S : τ 7−→ −τ−1, satisfying the relation (ST)3 = idH. The precise statement of S-duality is
the theory’s invariance under the simultaneous operation

G 7−→ LG and τ 7−→ S(τ).

We shall shortly see why the invariance under T is actually manifest, wherefore it suffices to
prove invariance under S. To see how these transformations affect the partition function of the
theory, it is helpful to first state what instantons are, as promised.

REMARK 3.2.4. In general, the conjecture involves a subgroup of SL2(Z) generated by the
transformations τ 7−→ τ + m, where m ∈N is bigger than 1 if G is not simply connected, and
τ 7−→ −(nτ)−1, where n is the lacing number of the complexified Lie algebra gC.[3] We shall
be interested in SU(k), to which these subtleties are not applicable, and therefore not return to
this remark.

3.2.3 Extremising the action: Yang–Mills instantons

Let us park these thoughts awhile and revisit the plainest definition of a Yang–Mills theory as
in the first section and see whether solutions to the equations of motion can be found.

Recall that we went through some effort to ensure B was a nondegenerate bilinear form. The
reason for requiring nondegeneracy is the following. With dim X = 4 as before, let

S± :=
∫

X
B(F± ?F, ?(F± ?F))

and recall that ?2 = (−1)p(4−p) when acting on p-forms. In particular, ?2F = F. Therefore, by
symmetry and bilinearity of B

S± = ±
∫

X
B(F± ?F, F± ?F) = ±(±2S +

∫
X

B(F, F) + B(?F, ?F)) = 2S± 2
∫

X
B(F, F).

We know S± > 0 because B is positive-definite. (This is so because κ̃ is positive-definite and by
Proposition A.2.2.) Consequently,

S >
∣∣∣∣∫X

B(F, F)
∣∣∣∣

[3]For the simply laced Lie algebras (e.g. the A series) it is equal to 1; for Bn, Cn and F4, to 2; and for G2, to 3.
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with equality precisely when F = ∓?F by nondegeneracy. Such curvatures therefore yield
minimal values of the action and they are called (anti-)selfdual, depending on the sign. They
evidently solve the equations of motion and therefore their underlying connections carry the
name Yang–Mills instantons.

This name is roughly explained as follows. It is well known that the value of S for an (anti-
)selfdual curvature is equal to an integer multiple of some constant. This follows from Chern–
Weil theory of characteristic classes. For G = SU(k), for example, this minimal value of S equals
the second Chern class of the bundle times a factor 8π2. This integer is known in this context
as the topological charge or instanton number. That is, the theory is quantised.[4] Observe that
(anti-)selfdual connections only appear in topological sectors with nonpositive (nonnegative)
instanton number.

In fact, viewing the Yang–Mills action as analogue of an L2-norm of F induced by B, we see
that Yang–Mills instantons precisely ‘minimise’ their curvatures, and mark the critical points
of the corresponding action. That is, they single out the local extrema of the action functional.
In the context of symmetry breaking, this can be interpreted as the implementation of quantum
tunnelling between such local minima; hence the name instanton. (Cf. the discussion preceding
Example A.3.7.)

These solutions need not necessarily exist. For example, Maxwell theory, as described in
Example 3.1.10, has no instantons, because of the following.

PROPOSITION 3.2.5. With setting ut supra, if G is abelian, there exist no instantons.

Proof. Let A ∈ Ω1(P, g) be a connection with (anti-)selfdual curvature F. Because g is abelian,
we have F = dA; remark that the analogue of Proposition A.2.2 for Ad(P)-valued forms states
that 〈ω, η〉 :=

∫
X B(ω, ?η) is an inner product, and the adjoint of d for this inner product is

again ± ?d?. Completely suppressing all signs, the norm squared of F is then

〈F, F〉 = 〈F, ?F〉 = 〈dA, ?dA〉 =
〈
dA, ?d?2A

〉
=
〈
d2A, ?A

〉
= 0. ���

The example relevant to us will be that of G = SU(k). Its Lie algebra su(k) consists of traceless,
skew-Hermitian (k× k)-matrices with commutator bracket and is semisimple. This means we
can use κ̃ = −κ, and the Killing form is given by κ(x, y) = 2k Tr(xy) for x, y ∈ su(k).

REMARK 3.2.6. Physicists usually write Tr(F ∧ ?F) for the bilinear form B induced by κ, and
either correct for the factor −2k or omit it altogether. We shall also adopt this convention. In
this case the gauge invariance of the action in fact boils down to cyclicity of the trace.

A very particular but useful case to keep in mind is SU(2) ∼= S3 ↪−→ P −� S4 = X. In this
case

∫
X Tr(F ∧ F) = −8π2n for some n ∈ Z. This can be seen by noting that an SU(2)-bundle

on S4 is determined by a transition function on the overlap of the two standard charts given by
the northern and southern hemispheres. This overlap is homotopy equivalent to the ‘equator’

[4]For G not simply connected, these numbers are evenly spaced, but not necessarily integral. One usually works
with the universal cover of G; see [VafaWitten] for details.
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S3 and so the transition function corresponds to an element of π3(S3) ∼= Z.

Recall we set dim X = 4; now fix G = SU(k). Pick an anti-selfdual connection A on a chosen
G-principal fibre bundle P, with fixed instanton number

Z 3 n :=
1

8π2

∫
X

Tr(F ∧ F).

In the notation of Remark 3.1.9(1), we have the following definition.

DEFINITION 3.2.7. LetMX(n, k) be the moduli space of SU(k)-instantons on X with charge
n. That is, it is the space of anti-selfdual connection one-forms, which is an affine space
modelled on Ω1(X, Ad P), with instanton number n, quotiented by the action of G.

For certain n, k, this moduli space is smooth and by [AtiHitSin, Thm. 6.1 & Tbl. 8.1] its expected
dimension is

dimMX(n, k) = 4nk− 1
2
(k2 − 1)(χ(X) + σ(X)), (3.2.3)

where σ(X) is the signature of X.[5] (This agrees with Proposition 3.2.5, as G is abelian precisely
when k = 1, in which case also n = 0 as the proof showed, and the moduli space is trivial.) In
general, this moduli space fails to be smooth or compact, however. We return to these points in
Chapter 9.

3.2.4 Modular predictions for partition functions

Back to Vafa and Witten for SU(k), with k = 2. The action we henceforth consider, bearing in
mind Remark 3.2.6, is

S =
1
g2

∫
X

Tr(F ∧ ?F) +
iθ

8π2

∫
X

Tr(F ∧ F).

Assuming F is anti-selfdual and has instanton number 8π2n =
∫

Tr(F ∧ F) > 0 as before, we
leave the reader an easy exercise to verify that

S = −2πiτn.

We shall return to a generic[6] discussion of partition functions in Chapter 5. For now, recall the
definition of the (Euclidean) partition function of a theory as the path integral of e−S over the
(in this case) gauge fields A. It is immediate that the partition function

Zn =
∫

e−S DA =
∫

qn DA

in the sector of instanton number n is invariant under T ∈ SL2(Z), where we defined the
usual q = q(τ) := e2πiτ. This is also the reason why θ is called an angle: the periodicity in τ

corresponds to θ’s being defined up to integer multiples of 2π. It is hence that the S-duality
conjecture pertains only to the transformation S ∈ SL2(Z).

[5]The reader recalls that the signature of (a connected component of) X is the signature of the quadratic form
induced by the cup product on the middle-degree cohomology of X.

[6]That is, ‘pertaining to genera‘ in the mathematical sense, not meaning ‘general’.
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The suggestion of S-invariance originally stems from Maxwell theory, as we saw. In this abelian
case SU(1) = U(1), the duality is actually true. It can be proved by introducing an auxiliary
field in the path integral above, which acts as Lagrange multiplier. By integrating this field
away (it is Gaußian), one swiftly shows the required invariance.

Vafa and Witten set out to test the conjecture for k = 2 in the strong coupling limit. What they in
fact show is that, for each n, the partition function equals the Euler characteristic χ(MX(n, k))
‘under favourable conditions’. We return to this in the forthcoming (q.v. Remark 3.2.8). They
proceed to define the generating function[7] over all topological sectors (for selfdual connections,
we would have n 6 0)

Z(τ) :=
ÿ

n>0

χ
(
MX(n, k)

)
qn (3.2.4)

and, as the title of their article indicates, test the predictions of S-duality for this function for
k = 2 (as well as G = SO(3), cf. Remark 3.2.3) and X a selection of algebraic fourfolds: K3
surfaces, P2

C, a Kähler manifold blown up in a single point, and ALE spaces (viz. the blowups
of Kleinian singularities). Specifically, they aim to show that Z(−1/τ) is LZ(τ), the partition
function with SU(2) replaced by LSU(2), except that they also allow for a number of subtleties.
For example, one could have that Z transform akin to a modular form, say

Z(−1/τ) = ±
(τ

i

)w
· LZ(τ)

for some weight w. Another possibility that Vafa and Witten take into account is a ‘zero-point
shift in the instanton number’, in analogy with how the Fourier series of a modular form might
have a constant power of q in front. To accommodate this possibility, they add a factor q−s,
for some undetermined s, to the definition of Z. For a more detailed explanation of why such
intricacies are to be expected (and are, indeed, found), see [VafaWitten, §3]. In particular they
argue that w and s should be linear combinations of the Euler characteristic and signature of X,
although the dependence on the latter turns out to be trivial.

The results of their computations do not disappoint: the function Z is found to possess modular
properties in all cases. Along the way, they find that for K3 surfaces it is moreover built out
of the partition function of a bosonic string in 26 dimensions, which is striking. Similarly, the
fermionic partition function (in ten dimensions) makes its appearance when considering an
abelian surface. We shall derive this explicitly in Section 5.3.

Moreover, the relevance to this thesis manifests itself in the identifications of the moduli spaces
MX(n, k) for certain complex surfaces X (such as K3 surfaces) with symmetric products and
Hilbert schemes of those surfaces. Mathematically, this turns out to be quite difficult and so far
this has only been solved concretely for low values of k; Chapter 9 is devoted to this matter.
Moreover, this connection begs the question how invariants such as Euler characteristics of
singular spaces are related to those of their resolutions. This is described by the ‘orbifold
techniques’ employed by Vafa and Witten that are presented in Chapter 5. There is one very
important caveat that should be pointed out.

[7]They also divide out a factor k = #Z(SU(k)) because the centre of the group acts trivially on the moduli space.
We omit it to avoid notational clutter.
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REMARK 3.2.8. The appearance of (topological) Euler characteristics of moduli spaces in the
partition function (3.2.4) is preceded by a lengthy verification that the surfaces which Vafa
and Witten consider satisfy certain ‘vanishing theorems’. For K3 and del Pezzo (in particular
P2) surfaces, for instance, the necessary requirements are met, and the so-called Vafa–Witten
invariants that took mathematicians a score years to define properly indeed reduce to the
ordinary Euler characteristic of the instanton moduli spaces. We revisit this in Chapter 9.

∗ ∗∗

This concludes the preliminary discussion of Vafa and Witten’s article. It is clear that the
moduli spaces of instantons play a crucial rôle in the theory. In general, these spaces have a
markedly complicated structure. The remainder of this chapter explores one particular space
for which all instantons can be described with relative ease. This space is R4, which glaringly
lacks a property we have been assuming throughout: compactness.

3.3 The ADHM construction: an uncharacteristically concise
disquisition

We have defined the entire theory on a compact fourfold X. One may wish to practise Yang–Mills
theories on noncompact manifolds, which requires some kind of condition on the bilinear form
B defined by the gauge fields (and their field strengths) akin to being compactly supported.
Indeed, we could enforce this on Euclidean space R4 by only considering connections whose
curvatures vanish at points as they tend to infinity. Equivalently, the connections become ‘pure
gauge’ towards infinity, meaning they transform under a gauge transformation ϕ ∈ G as

(ϕ · A)(x)
|x|→∞−−−→ ϕ−1 dϕ

(cf. Remark 3.1.9). Viewing S4 as the one-point compactification of R4, this allows us to
define instantons on R4 by taking those on S4 such that the gauge group acts trivially in a
neighbourhood of the point at infinity. Such instantons are called framed, and we assume this
property from now on.

The reader may wonder why one should take Euclidean rather than Minkowski space. The
reason is surprisingly simple. The Hodge star squares to minus the identity on Minkowski
space due to the signature of the metric. Therefore an (anti-)selfdual curvature would have
to be equal to ±

√
−1 times itself, but it is also supposed to be valued in a real vector space.

Therefore there are no instantons in Minkowski space.

∗ ∗∗

For R4, the famous construction due to Atiyah, Drinfeld, Hitchin and Manin demonstrates ex-
plicitly how to construct (framed) instantons on this space. This ADHM construction completely
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describes the moduli spaceMR4(n, k), which is generally not possible for other manifolds.
She is elegant in her simplicity; at the end of day, most of it boils down to plain linear algebra
computations. We give a brief overview of the ADHM construction, omitting all proofs. We
refer to [Daas] or [Linden] for the full treatment in all its glory.

Introduce complex coordinates on the algebra of quaternions[8] H = Ri⊕Rj⊕Rij⊕R1 by
writing elements as x = x1i + x2 j + x3ij + x4 =: (z1, z2), where

z1 = x2 + ix1 and z2 = x4 + ix3

are complex numbers. This is purely for notational convenience.

The essence of the procedure is the explicit construction of an (anti-)selfdual connection on a
complex, orientable[9] vector bundle over S4 with Hermitian metric. In order to get the required
principal fibre bundle for the purposes of Yang–Mills instantons, we then implicitly invoke the
following standard result.
THEOREM 3.3.1. Let k ∈N and fix a ground manifold. There exists an equivalence of categories{

complex orientable vector bundles
of rank k with Hermitian metric

}
∼−→ {principal SU(k)-bundles}

given by taking the associated bundle of orthonormal, oriented frames.

Fix n, k ∈N. In order to construct instantons on R4 with structure group SU(k) and instanton
number n, we start with so-called ADHM data.

An ADHM datum is a pair of Hermitian inner product spaces V and W of dimensions n
and k, respectively, together with linear maps B1, B2 ∈ EndC(V) and I ∈ HomC(W, V) and
J ∈ HomC(V, W). In other words, a quiver representation

V W
I

J

B1

B2

We shall connect the ADHM construction to this quiver more explicitly in the next chapter.

DEFINITION 3.3.2. An ADHM datum (V, W, B1, B2, I, J) is called an ADHM system if:

i) The ADHM equations are satisfied:

[B1, B2] + I J = 0 and [B1, B:

1] + [B2, B:

2] + I I: − J: J = 0.

ii) For all x = (z1, z2), y = (w1, w2) ∈H not both zero, the map

αx,y : V −→W ⊕V ⊕V : v 7−→

 w2 J − w1 I:

−w2B1 − w1B:

2 − z1 idV

w2B2 − w1B:

1 + z2 idV

 v

[8]We write ij for the usual k as there are enough k’s floating around as is.
[9]Since the manifold S4 is orientable, one can equivalently say that the determinant bundle is globally trivial.
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is injective.

iii) For all x = (z1, z2), y = (w1, w2) ∈H not both zero, the map

βx,y : W ⊕V ⊕V −→ V :

w
v1

v2

 7−→
 w2 I + w1 J:

w2B2 − w1B:

1 + z2 idV

w2B1 + w1B:

2 + z1 idV


>w

v1

v2


is surjective.

REMARK 3.3.3. It is important to note that the matrices (B1, B2, I, J) of an ADHM datum carry
an action of GLn(C)× GLk(C) given by

(g, h) · (B1, B2, I, J) = (gB1g−1, gB2g−1, gIh−1, hJg−1).

It is immediate that the defining properties of an ADHM system are invariant under this action.
Furthermore, the action restricts to one of U(n)× SU(k), which preserves the inner product
given by trace pairing.

The latter two conditions are clearly seen to be equivalent to surjectiveness of the maps
Rx,y : W ⊕V ⊕V −→ V ⊕V given by

Rx,y(w, v1, v2) =

(
βx,y

α:
x,y

)w
v1

v2

 .

Now, given this property, the sufficiently motivated reader with too much time on his hands
can verify that βx,y ◦ αx,y = 0 for all x, y if and only if the ADHM equations are satisfied.
Therefore, given an ADHM system, we get an injective complex bundle morphism

α : V −→W ⊕V ⊕V

acting by αx,y fibrewise. The underlining denotes the trivial bundle on (H×H) \ {0} with
given fibre. Analogously, we have a surjective map β such that β ◦ α = 0. Then the diagram

V W ⊕V ⊕V Vα β

allows us to form a vector bundle E := ker β
/

im α −→ (H×H) \ {0} with the induced
Hermitian metric. Its fibres are

Ex,y := ker βx,y
/

im αx,y ∼= ker βx,y ∩ (im αx,y)
⊥ = ker βx,y ∩ ker α:

x,y = ker Rx,y.

Clearly, this E is orientable by construction, and its rank is k + n + n− n− (n− 0) = k, as
desired.

REMARK 3.3.4. it is not difficult to verify by direct computation that for all q ∈H×, the fibres
satisfy Ex,y = Eqx,qy for all (x, y) ∈ (H×H) \ {0}. Hence, E descends to a vector bundle over
the projectivisation P1(H) ∼= S4.

40



Under the identification Ex,y = ker Rx,y, let P : W ⊕V ⊕V −→ E be the orthogonal projection.
Then we can equip E with a connection∇ induced from the trivial connection d on W ⊕V ⊕V
by post-composing with P. Locally on a trivialisation patch U ⊂ E, we can write ∇ = d + A
where A ∈ Ω1(U, EndC(C

k)) is the connection 1-form (vector potential).

Let ∆x := R:

x,1 for x ∈ H ∼= R4. It behaves akin to a Dirac operator, as described in [Linden].
Clearly, the kernel of ∆:

x yields solutions to the ADHM equations. It can be checked that
one may define a section M ∈ Γ(R4, Hom(E, W ⊕V ⊕V)) by mapping a point x to the
matrix whose columns are an orthonormal basis of ker ∆:

x. By construction ∆:M = 0 and
M:M = idE pointwise. A tedious proof shows that the converse combination, MM:, is equal
to the projection P. From this one can infer the main result, keeping in mind Theorem 3.3.1.

PROPOSITION 3.3.5. The connection ∇ satisfies A = M:dM (or, locally, Aµ = M:∂µ M). This
vector potential takes values in su(E) ∼= su(k) and, recalling Remark 3.3.4, viewed over S4, has
instanton number −n.

Proof. See [Daas]. ���

THEOREM 3.3.6 (Atiyah, Drinfeld, Hitchin, Manin, 1978). The curvature of A = M:dM is
anti-selfdual. Moreover, this in fact induces a bijection between the set of ADHM systems modulo
the action of U(n)× SU(k) and the moduli spaceMR4(−n, k) of gauge equivalence classes of framed
SU(k)-instantons on with charge −n.

Proof. See [ADHM]. ���

Recalling Proposition 3.2.5, which in this case says there are no instantons for k = 1 irrespective
of n, we can in fact state something stronger now. This will turn out to be a spanner in later
works, when we examine representations of the quiver shown earlier more closely.

PROPOSITION 3.3.7. There are no instantons obtained from an ADHM datum with I = 0 or J = 0.

Proof. Suppose I = 0 and (V, W, B1, B2, 0, J) forms an ADHM system. Take the trace of the
second ADHM equation to find Tr(J: J) = 0. By nondegeneracy of the trace pairing, we find
J = 0. This is evidently symmetric in I and J.

The first ADHM equation now simply states that B1 and B2 commute. As such, they share an
eigenvector, say v ∈ Ck, with eigenvalues λ1 and λ2, respectively. Let y = (w1, w2) = (0, 1) ∈
H× and x = (z1, z2) = (λ1, λ2) ∈H. Filling in the definition, we see that

αx,y(v) =

 0
B1 − λ1 id
−B2 + λ2 id

 v = 0

and so α is not injective.[10] ���

[10]In fact, one can easily show that for each y ∈ H× there is an x making αx,y have nonzero kernel, so the
obstruction does not simply come from one unfortunate point.
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REMARK 3.3.8. The ADHM construction is powerful yet modest, withal has the considerable
drawback of only being applicable to R4 (or S4). The issue is twofold: the real manifold R4 is
obtained by analytification of A2

C but itself not compact, the requirement of having framed
instantons notwithstanding. Its compactification S4, on the other hand, is not algebraic: if it
were, its complex dimension would be two, but the second Betti number is strictly smaller
than the zeroeth one, contradicting Lefschetz’s Hyperplane Theorem.

This consideration means the ADHM construction sèche is not directly relevant to our study of
MX(n, k) where X is a suitable manifold for the purposes of string theory compactification.
We nevertheless introduce it for the reason announced at the beginning of this chapter — it
serves to motivate the forthcoming Chapter 6 — but also because of its relation to the Hilbert
scheme of the affine plane, to which the next chapter is devoted. Before heading thither, we
very briefly examine a deformation of the ADHM construction.

3.4 Amenable Deformations Herald Momentum maps

We reiterate that Vafa and Witten set out to test the S-duality conjectures for the structure
group SU(2) — in the abelian case SU(1), the statement is simply true. It is therefore rather
unfortunate that this well-understood scenario does not admit instantons by Proposition 3.2.5.
We conclude this chapter by briefly presenting a modification of the ADHM equations that
allow R4 (with all caveats about compactness and algebraicity) to have abelian instantons.

It is possible to alter the ADHM equations such that their right-hand sides need not vanish. The
trick is to reinterpret the manifold R4 as a ‘noncommutative space’, meaning its coordinate ring
is declared to be noncommutative. The upshot of this will be the existence of abelian instantons.
Without further ado, we present this adaptation, following [NekrBrad] and [NekrSchw].

Ordinarily, R[x1, x2, x3, x4] is the commutative coordinate ring of R4. We instead assign to R4

the coordinate ring

R〈x1, x2, x3, x4〉
/(

[xi, xj] = ωij | 1 6 i, j 6 4
)

for some (necessarily skew-symmetric) matrix (ωij)i,j ∈ Mat4×4(R). It is an elementary fact
that such matrices can only have even rank. If its rank is nought, we retrieve the commutative
space. If it is two, then we acquire a kind of intermediate space between ordinary R4 and what
we want. Finally, in the case of rank four we obtain what we call noncommutative R4, or R4

nc. It
is easy to show how the defining commutation relations lead to the allowed automorphisms of
this space (and the Lie algebra thereof), which enter into the description of vector bundles and
connections on noncommutative R4 and thence into the modified ADHM constructions. These
details are shown in loc. cit. and we omit them as they are somewhat of a digression.

∗ ∗∗

Let (ζR, ζC) ∈ R×C and let (V, W, B1, B2, I, J) be an ADHM datum. By definition, the deformed
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ADHM equations are given by

µC := [B1, B2] + I J = ζC idV and µR := [B1, B:

1] + [B2, B:

2] + I I: + J: J = ζR idV .

(The notation µ will be explained in the next chapter.) Together with the properties of α and β

described herebefore, this allows one to perform the ADHM construction with appropriate
modifications.

Moreover, the deformation parameters ζ can be simplified, as follows. We perform the spe-
cial unitary transformation on the set of ADHM data (with respect to the trace pairing) to
‘rotate away’ the complex component. Specifically, if x, y ∈ C with |x|2 + |y|2 = 1, then the
transformation

(B1, B2, I, J) 7−→ (xB1 − yB:

2, xB2 + yB:

1, xI − yJ:, xJ + yI:)

effects the change (ζR, ζC) 7−→ (ζR, 0) for ζR > 0 (the two ζR’s are different but we keep the
same notation), as the reader may verify. For such a transformed but ‘gauge equivalent’ datum,
the deformed ADHM equations simply amount to looking at the fibres µ−1

C
(0) ∩ µ−1

R (ζR idV),
up the action of the unitary group of V.

By setting ζR 6= 0, interesting things already occur for k = 1. Whereas previously, there were
no abelian instantons, the computations in [NekrSchw, §4] and [NekrBrad, §7] show that
essentially the same derivations as in the (ordinary) ADHM construction now yield nontrivial
gauge fields and curvatures outside a finite set of ‘freckles’, where the maps involved do
not satisfy the requirements of an ADHM system. Moreover, op. cit. introduces a metric (the
Burns metric) with respect to whose Hodge star the resulting abelian instanton (with charge 1)
is anti-selfdual. The explicit details of the computation are rather tedious and obfuscate the
message to be conveyed; namely that a natural modification of the ADHM equations arising
from their being effected by the maps µ to be explained soon allows for abelian instantons to
exist, whose moduli space can therefore be used in the machinery of Vafa and Witten. Moreover,
this process of making a space noncommutative can be extended to complex surfaces and ALE
spaces, as described in loc. cit., thus lending the method further usefulness.
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Erhabne, heil’ge Götter!
Ihr habt mit reichem Segen mich geschmückt!
In meine Hand gabt ihr des Sanges Bogen,
Der Dichtung vollen Köcher gabt ihr mir;
Ein Herz zu fühlen, einen Geist zu denken
Und Kraft zu bilden was ich mir gedacht!

— FRANZ S. GRILLPARZER (1791–1872),
spoken by Sappho in the eponymous play.

4ALL AQUIVER ON THE AFFINE PLANE

R
EPRESENTATION theory of quivers is a vast and interesting subject, but seemingly
unrelated to the subject of this thesis. In this chapter, we show the contrary by
connecting it to the ADHM construction and to Hilbert schemes. Our goal is to

thoroughly examine the complex plane. Its Hilbert scheme (A2
C)

[n] has a perhaps surprising
and, to the uninitiated, allochthonous description in terms of moduli spaces of certain quiver
representations.

4.1 Quiver representations and their moduli spaces

We first recall some aspects of representation theory of quivers, following the language of the
book [LeBruyn]. We work over the field k = C. The reader should be familiar with Appendix
A.2.3.

4.1.1 Assembling the toolbox

We denote a quiver by Q = (Q0, Q1, h, t), where the components of the tuple are the set of
vertices, the set of arrows, the head map and the tail map, respectively. A quiver setting is a
quiver together with a dimension vector α : Q0 −→ N0 assigning to each vertex v ∈ Q0 a
dimension αv. A representation of a quiver setting is then an assignment of linear maps between
the corresponding vector spaces. That is, for each a ∈ Q1, we have a linear map

Xa : Cαt(a) −→ Cαh(a) .

Identifying such linear maps with concrete complex (αh(a) × αt(a))-matrices, we define the
representation space of the quiver setting (Q, α) as

Rep(Q, α) :=
⊕

a∈Q1

Matαh(a)×αt(a)(C).

It naturally carries an action of the group GLα := ∏v∈Q0
GLαv(C) by

GLα×Rep(Q, α) −→ Rep(Q, α) :
(
(gv)v∈Q0 , (Xa)a∈Q1

)
7−→

(
gh(a)Xag−1

t(a)

)
a∈Q1

.
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In fact, the action descends to one of PGLα = GLα

/
C× . It is clear that each orbit is precisely one

equivalence class of representations, since this group acts by invertible intertwiners. Of course,
a representation X ∈ Rep(Q, α) uniquely determines the structure of a (left) CQ-module on
Cn, where n := ∑v∈Q0

αv and CQ is the path algebra of Q. Write ev ∈ CQ for the idempotent
associated to the vertex v ∈ Q0.

A subrepresentation of a representation (Xa)a is for each vertex v a subspace of Cαv , together
with linear maps given by the restrictions of the Xa, provided that each such restriction indeed
lands in the assigned subspace of Cαh(a) .

Obviously, Rep(Q, α) is an affine complex variety but its quotient by GLα defined by the
corresponding ring of invariants, called the categorical quotient, need not be very useful. In
general, it will ‘miss’ many orbits, as the following example illustrates.
EXAMPLE 4.1.1. Consider the quiver setting with two one-dimensional vertices and two
parallel arrows from one to the other. The representation space is just C2 = CX ⊕ CY and
the group by which we quotient is C× ×C×. It acts on C2 by (λ, µ) · (X, Y) = (λXµ−1, λYµ−1).
Clearly, X = 0 = Y is a fixed point, whereas outside the origin, the ratio X

Y or Y
X (at least one of

the two being defined) precisely determines a P1-orbit.

The only invariant, however, is the origin in C2, and so the categorical quotient is a point. The
projective lines have disappeared completely.

To get a meaningful quotient variety, called the Mumford quotient, or geometric invariant theory
quotient, we must take the Proj of a certain graded ring.

4.1.2 Mumford quotients of varieties

The following construction is due to King. Let G be any group. A character of G is a group
homomorphism ϑ : G −→ C×, that is, a one-dimensional complex representation. For n ∈ Z

we write nϑ := ϑ(−)n.

Let X be a complex variety equipped with a G-action and f ∈ OX(X), a regular function. We
say f is ϑ-semi-invariant if for all g ∈ G and x ∈ X, the function satisfies f (g · x) = ϑ(g) f (x).
We write OX(X)ϑ for such functions. We then obtain the graded ring

SIϑ(X) :=
⊕

n∈N0

OX(X)nϑ,

where the component in degree zero is the (ordinary) G-invariants. Indeed, the grading is well
defined, for if f ∈ OX(X)nϑ and f ′ ∈ OX(X)mϑ, then for all g ∈ G and x ∈ X we have

( f f ′)(g · x) = ϑ(g)n f (x)ϑ(g)m f ′(x) = ϑ(g)n+m( f f ′)(x).

DEFINITION 4.1.2. The Mumford quotient of X by G along ϑ is

X�
ϑ

G := Proj SIϑ(X).
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We return to the task at hand. The moduli space of geometrically ϑ-semistable representations shall
be denotedM(Q, α, ϑ) := Rep(Q, α)�

ϑ
GLα. This provides a very concrete geometric structure.

For instance, the (closed) points of this scheme are prime (maximal) ideals of the ring of semi-
invariants that do not wholly contain all homogeneous elements of positive degree. Moreover,
one can find explicit generators for the ring of semi-invariants due to a result by Le Bruyn,
Procesi, Schofield and Van den Bergh, as described in op. cit. Representation theoretically,
however, this gives no handle on this moduli space. To describe it, we must find explicit
characters of GLα. This is not difficult.

PROPOSITION 4.1.3. Any character of GLα is of the form

GLα −→ C× : (gv)v 7−→ ∏
v∈Q0

det(gv)
ϑv

for certain ϑv ∈ Z.

Proof. View GLα and C× as complex Lie groups. Then by connectedness of the former, we know
that the tangent map induces an injection Hom(GLα, C×) �−→ Hom(glα, C). (See for example
[Kirill, Theorem 3.20].) Here, glα is the direct sum of all glαv(C), where v ∈ Q0. Because C is
abelian, each Hom(glαv(C), C) comprises all those C-linear maps that vanish on commutators.
This precisely characterises the trace, up to scalar multiple. Therefore any morphism glα −→ C

is a sum of multiples of traces, and hence the original morphism of Lie groups must be a
product of powers of determinants, since we know the derivative of such. ���

Consequently, we identify characters of GLα with vectors ϑ : Q0 −→ Z. We henceforth require
that α · ϑ := ∑v∈Q0

αvϑv = 0. If this condition is not satisfied, there are no nonzero ϑ-semi-
invariants: for any λ ∈ C× and semi-invariant f , we have

f = (λ idαv)v · f =

(
∏

v∈Q0

(λαv)ϑv

)
f = λα·ϑ f .

DEFINITION 4.1.4. Let (Q, α) be a quiver setting and ϑ, a character of GLα with α · ϑ = 0. Then
a representation of (Q, α) is called

(i) ϑ-semistable if there exists no subrepresentation whose dimension vector β satisfies
β · ϑ < 0,

(ii) ϑ-stable if there exists no subrepresentation whose dimension vector β satisfies β · ϑ 6 0,
and

(iii) ϑ-polystable if it is a direct sum of stables.

If there exists no possible dimension vector 0 < β < α such that β · ϑ = 0, the first two notions
coincide, and the character is called generic.

It is useful to remark that for ϑ = 0, semistability is automatic, hence (poly)stability corresponds
to (semi)simplicity. The point is the following theorem, which we briefly motivate.
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Write Rep(Q, α, ϑ) for the open subvariety of all ϑ-semistable representations of Rep(Q, α).
In the subspace topology, it could have more closed GLα-orbits (of course it might be empty
as well). According to this theorem, the quotient by GLα is precisely the moduli space of
ϑ-semistables with closed orbits. We provide but a rough sketch of the proof.

THEOREM 4.1.5. Let everything be as above. Then the C-points ofM(Q, α, ϑ) precisely correspond to
GLα-orbits of ϑ-polystable representations. Moreover, if ϑ is generic, this moduli space is smooth.

Proof. See [LeBruyn, §4.8]. The idea behind the first statement is that an orbit of a semistable
representation is Zariski-closed if and only if it is polystable. A rough idea of this is as follows:
for V a ϑ-semistable representation and W an allowed subrepresentation, one can show that
W ⊕U ∈ GLα ·X, with U := V

/
W. Moreover, the matrices X of V are given arrow-wise by(

XW ∗
0 XU

)
∼
(
λ 0
0 1

)(
XW ∗
0 XU

)(
λ
−1 0
0 1

)
=

(
XW λ · ∗
0 XU

)
λ→0−−→ XW⊕U .

From this one can deduce that this limit point is contained in the orbit if the subrepresentations
of V are direct summands.

For smoothness, one can show that all orbits are diffeomorphic in the generic case, and hence
the quotient map

Rep(Q, α, ϑ)
GLα−�M(Q, α, ϑ)

can be seen as fibre bundle. The total space is (Zariski-)open and can be shown to be codimen-
sion one, and all ϑ-(semi)stable points are smooth, meaning the base must be as well. ���

COROLLARY 4.1.6. For ϑ = 0, the points M(Q, α, 0) are in one-to-one correspondence with the
closed orbits in Rep(Q, α) of semisimple representations.

In view of this bijective correspondence between the points ofM(Q, α, ϑ) and the closed GLα-
orbits in Rep(Q, α, ϑ), consider the following diagram. We set R := Γ(Rep(Q, α),ORep(Q,α)),
which is a huge polynomial ring and whose GLα-invariants are the degree-zero component of
S := SIϑ(Rep(Q, α)).

Rep(Q, α) M(Q, α, 0) = Spec(RGLα) {closed orbits in Rep(Q, α)}

Rep(Q, α, ϑ) M(Q, α, ϑ) = Proj(S) {closed orbits in Rep(Q, α, ϑ)}

GLα 1−1

GLα

π

1−1

The morphism π is induced by the inclusion RGLα ↪−→ S and is proper.

4.1.3 Symplectic structures and momentum maps

Given a quiver Q, define the opposite of Q to be the quiver[1] Qwith vertices Q0 = Q0 and
arrows given by Q1 = {a∗ | a ∈ Q1} with h(a∗) = t(a) and t(a∗) = h(a). Combining the two,

[1]The pronunciation is ‘yuke’.
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define the double quiver[2] Q Qwith the same set of vertices and for each arrow a a new arrow a∗

in the opposite direction, i.e., Q Q1 = Q1 t Q1.
DEFINITION 4.1.7. Let Q be a quiver and λ : Q0 −→ C : v 7−→ λv, a complex vector. The
preprojective algebra of weight λ is the C-algebra

Πλ(Q) := CQ Q

/ ÿ

a∈Q1

(aa∗ − a∗a)−
ÿ

v∈Q0

λvev

 .

Moreover, we call Π(Q) := Π0(Q) simply the preprojective algebra.

The defining relation of the preprojective algebra of weight λ can be decomposed into an equiv-
alent set of relations for each vertex v by conjugating it with the corresponding idempotents ev.
Hence one deduces that the CQ Q-module corresponding to a representation X = (Xa | a ∈ Q Q1)
is also a Πλ(Q)-module if and only if for all v ∈ Q0, the relation

ÿ

a∈Q1
h(a)=v

XaXa∗ −
ÿ

a∈Q1
t(a)=v

Xa∗Xa = λv idαv

holds. We write Rep(Π(Q), α) for the CQ Q-representations that are also Π(Q)-modules, and
M(Π(Q), α, ϑ) for the analogous Mumford quotient. We note that these vertex relations are
GLα-invariant and in fact we can emulate Theorem 4.1.5.

THEOREM 4.1.8. The closed GLα-orbits of ϑ-semistable Π(Q)-representations precisely corre-
spond to the orbits of ϑ-polystable ones, which are in one-to-one correspondence with the points
ofM(Π(Q), α, ϑ).

We shall now equip the vector space Rep(Q Q, α) with the standard symplectic structure (see Ap-
pendix A.2.3), as follows. Identify the vector space Rep(Q, α) with its tangent space canonically.
For the cotangent space, we explicitly use the isomorphism given by the trace pairing

Rep( Q, α) −→ Rep(Q, α)∗ : X 7−→

Y 7−→
ÿ

a∈Q1

Tr(Xa∗Ya)

 .

One easily verifies that this map preserves the (linear) action of GLα, where the codomain
carries the contragredient. Therefore we have identifications of GLα-modules

Rep(Q, α)⊕ Rep(Q, α)∗ = Rep(Q, α)⊕ Rep( Q, α) = Rep(Q Q, α).

The basis we choose for Rep(Q, α) is given by {qaij | a ∈ Q1, 1 6 i 6 α(h(a)), 1 6 j 6 α(t(a))},
where for each arrow a we set qaij the matrix with a 1 at position (i, j) and zeroes elsewhere. It
is then trivially checked that the corresponding dual (with respect to the trace pairing) basis
vector paij is given by q>a∗ij = qa∗ ji.

The general expression for the symplectic form then translates to

ω : Rep(Q Q, α)× Rep(Q Q, α) −→ C : (X, Y) 7−→
ÿ

a∈Q1

Tr(Xa∗Ya)− Tr(XaYa∗).

[2]The pronunciation is ‘you queue’.
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The Lie group GLα (rather, PGLα) acts linearly and symplectomorphically by cyclicity of the
trace. Its Lie algebra

pglα =
⊕

v∈Q0

glαv(C)
/

C idαv

then acts by the derivative of conjugation, meaning for T ∈ pglα and X ∈ Rep(Q Q, α),

(T · X)a = Th(a)Xa − XaTt(a)

for all a ∈ Q Q1. By Theorem A.2.10, the action of PGLα is Hamiltonian. To explicitly give its
momentum map, called the complex momentum map, we once more use the trace pairing in
order to identify the dual of pglα with the space

gl0α :=

T ∈ glα

∣∣∣∣∣ ÿ

v∈Q0

Tr Tv = 0

 .

Explicitly, the isomorphism is

gl0α −→ pgl∗α : T 7−→

S 7−→
ÿ

v∈Q0

Tr(TvSv)

 ,

which is readily seen to be well defined.

PROPOSITION 4.1.9. The complex momentum map is given by

µC : Rep(Q Q, α) −→ gl0α : X 7−→

 ÿ

a∈Q1
h(a)=v

XaXa∗ −
ÿ

a∈Q1
t(a)=v

Xa∗Xa


v∈Q0

.

Beweis. Klar. ���

This produces the following useful result. Whilst it is true for any weight λ, we shall only need
the preprojective algebra (of weight zero).

COROLLARY 4.1.10. The fibre µ−1
C
(0) precisely equals Rep(Π(Q), α).

∗ ∗∗

Having obtained the complex momentum map, we can similarly construct a real momentum
map, as follows. Equip Rep(Q, α) with a Hermitian inner product by setting

〈X, Y〉 :=
ÿ

a∈Q1

Tr(XaY:
a )

for X, Y ∈ Rep(Q, α). Recall U(n) is the maximal compact subgroup of GLn(C), wherefore
Uα = ∏v∈Q0

U(αv) is that of GLα. It indeed preserves this inner product. The induced action
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of uα =
⊕

v u(αv) on Rep(Q, α) is given as before by (u · X)a = uh(a)Xa − Xaut(a) for all
X ∈ Rep(Q, α) and u ∈ uα and all arrows a ∈ Q1. Define the real momentum map by

µR : Rep(Q, α) −→ u∗α : X 7−→ (u 7−→ i 〈u · X, X〉)

Once more identifying the dual of uα with the Lie algebra itself via the trace pairing, a routine
exercise shows that we can set

µR : Rep(Q, α) −→ uα : X 7−→ i

 ÿ

a∈Q1
h(a)=v

XaX:
a −

ÿ

a∈Q1
t(a)=v

X:
aXa


v∈Q0

.

View ϑ as the element (iϑv idαv)v of uα. It is plain that if X ∈ µ−1
R (ϑ), then the entire Uα-orbit of

X lies in this fibre.
THEOREM 4.1.11 (Kempf–Ness). There is a natural homeomorphism between Uα-orbits of ϑ-
polystables in µ−1

R (ϑ) and closed GLα-orbits in Rep(Q, α, ϑ).

Proof. See [LeBruyn, §8.1]. ���

Should we apply the real momentum map to the double of a given quiver, all of the above now
condenses into the following powerful result, allowing us to distil the ADHM construction
from quiver representations, as was already alluded to notationally in Section 3.4.

THEOREM 4.1.12. Let Q be a quiver and consider the momentum maps µC : Rep(Q Q, α) −→ gl0α and
µR : Rep(Q Q, α) −→ uα as before. Then there is a diffeomorphism of real manifolds(

µ−1
C (0) ∩ µ−1

R (ϑ)
)/

Uα
∼−→M(Π(Q), α, ϑ).

Proof. See [LeBruyn, Proposition 8.6], cf. [Nakaj99, Theorem 3.24]. ���

These moduli spaces moreover carry a so-called hyperkähler structure, which is sometimes
desirable from the physical perspective. This is explained in Appendix A.2.2.

4.2 The Hilbert scheme of A2

Armed with these concepts and results, we proceed to fire all of our cannon to describe the
Hilbert scheme of the affine plane and to connect it to the ADHM construction from Chapter 3.

Consider the quiver drawn below with dimension vector α = (n, 1) as indicated, n ∈N.

n 1

Let Q be its double. Elements of Rep(Q, α) = Matn×n(C) ⊕Matn×n(C) ⊕ Cn ⊕ Cn shall be
denoted (B1, B2, i, j) as per the labelling of the arrows below. We call i a cyclic vector for this
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representation, if there exists no proper subspace W ( Cn that contains i and is invariant under
both B1 and B2.

n 1
i

j

B1

B2

The nomenclature should seem suspiciously familiar: the reader of course recognises an ADHM
datum. Our plans with this quiver are twofold. We wish to prove that (A2

C)
[n] is isomorphic

to the moduli space of Q-representations for which i is cyclic, j = 0 and B1 and B2 commute.
To do so, we first establish how these conditions relate to the stability conditions introduced
in Section 4.1. This will bear copious fruit. Having done so, we proceed to examine how this
space relates to ADHM instantons, harvesting rather sour produce indeed.

∗ ∗∗

Fix the character ϑ = (1,−n) and suppose a representation V = (B1, B2, i, j) is ϑ-semistable.
Then i must be cyclic, for if i ∈ W ( Cn is a subspace that is stable under B1 and B2, this
defines a subrepresentation of dimension vector (dim W, 1) that has negative inner product
with ϑ. Conversely, if i is cyclic, a proper subrepresentation can fall under one of two cases.
Either the right vertex has dimension zero (and the left one is suitably restricted to the kernel
of j), in which case the inner product with ϑ is positive, or it is 1, in which case it must be the
full representation by cyclicity of i. Hence V is in fact ϑ-stable, so that ϑ is generic. This means
M(Q, α, ϑ), whose points correspond to isomorphism classes of representations for which i is
cyclic, is smooth by Theorem 4.1.5.

Next, we see that V is a Π(Q)-module if and only if B1B2 − B2B1 + ij = 0 (left vertex) and
−ji = 0 (right vertex). Actually, the first equation already implies ji = 0 automatically by
taking its trace. Assuming i is cyclic, we wish to prove that V is a Π(Q)-module if and only if
in fact [B1, B2] = 0 and j = 0. We adapt the proof from [LeBruyn, Theorem 8.12] and [Nakaj99,
Proposition 2.8].

PROPOSITION 4.2.1. A representation V = (B1, B2, i, j) ∈ Rep(Q, α, ϑ) satisfies [B1, B2] + ij = 0
precisely when [B1, B2] = 0 and j = 0.

Proof. One direction is obvious. Assume now [B1, B2] + ij = 0.

We claim that for any word w ∈ C〈B1, B2〉, the combination jwi is 0, which we prove by
induction on the length of w. First of all, ji = 0 as remarked prior. Suppose the claim is true for
all words of length smaller than ` ∈N.

As an auxiliary result, consider a word of length ` of the form w = w1B1B2w2 for some words
w1, w2 ∈ C〈B1, B2〉 of lengths `1 and `2, respectively, such that `1 + `2 = `− 2. Then

jw = jw1([B1, B2] + B2B1)w2 = −(jw1i)jw2 + jw1B2B1w2 = jw1B2B1w2 (4.2.1)
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by the induction hypothesis. Therefore we can take w = Bp
1 Bq

2 without loss of generality, where
p + q = `. We can then deduce that

jwi = Tr(jBp
1 Bq

2i) = Tr(Bp
1 Bq

2ij) = −Tr(Bp
1 Bq

2[B1, B2]) = −Tr(Bp
1 Bq

2B1B2 − Bp
1 Bq

2B2B1)

= −Tr(Bp
1 [B

q
2, B1]B2) = −

q−1
ÿ

r=0

Tr(Bp
1 Br

2[B2, B1]B
q−r
2 ) = −

q−1
ÿ

r=0

Tr(jBq−r
2 Bp

1 Br
2i)

= −
q−1
ÿ

r=0

jBq−r
2 Bp

1 Br
2i = −

q−1
ÿ

r=0

jBp
1 Bq

2i = −qjwi.

The second, fifth and seventh equalities use cyclicity of the trace and the ninth follows from
(4.2.1). The sixth equality arises from a series of cancellations of pairs of the form

Tr( . . .− Bp
1 Br

2B1Bq−r+1
2 + Bp

1 Br−1+1
2 B1Bq−(r−1)

2 − . . . ).

Because q 6= −1, we find that jwi = 0.

By cyclicity of i, we must have that C〈B1, B2〉i = Ck. But then jv = 0 for all v ∈ Ck, and so
j = 0. Consequently [B1, B2] = 0. ���

COROLLARY 4.2.2. One has

{(B1, B2, i, j) ∈ Rep(Q, α) | i is cyclic, [B1, B2] = 0 and j = 0}
/
GLn(C) ∼=M(Π(Q), α, ϑ).

The group action on the left is given as follows. For g ∈ GLn(C), we set

g · (B1, B2, i, j) = (gB1g−1, gB2g−1, gi, jg−1).

REMARK 4.2.3. The group action is actually the same as that of GLα = GLn(C)×C× described
in Section 4.1.1. However, λ ∈ C× acts on i by iλ−1 and on j by λj, so it is cancelled entirely in
the combination ij which appears in our constraint. Moreover, j = 0, so we may pick any value
of λ in the quotient.

We have thus translated the representation theoretic moduli space of representations of Q with
aforementioned conditions into a geometric and, in fact, smooth moduli space of isomorphism
classes of ϑ-polystable Π(Q)-modules. Having established this, [Nakaj99, Theorem 1.9] now
answers the question how this space relates to the Hilbert scheme of A2

C.
THEOREM 4.2.4. There is a canonical isomorphism

(A2
C)

[n] ∼= {(B1, B2, i, j) ∈ Rep(Q, α) | i is cyclic, [B1, B2] = 0 and j = 0}
/
GLn(C) .

REMARK 4.2.5. The above is actually true over any algebraically closed ground field. We stick
to C in view of the physical applications.

The proof is short, but relies on some advanced results that we omit, as they are not relevant
outside of this proof. Instead, we refer to pages 9 ff. of op. cit. Here, we explain how these two
objects are isomorphic only as sets.
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Let I ⊂ C[X, Y] be an ideal of codimension n. We construct a representation by placing the
quotient C[X, Y]

/
I at the left vertex and taking the maps (B1, B2, i, j) = (X · , Y · , 1, 0). That

is, B1 is multiplication by X, and B2, by Y. These two clearly commute. Moreover, i = 1 mod I
is cyclic because any element in the ring is by definition a linear combination of products of X
and Y.

Conversely, taking the class of (B1, B2, i, 0) on the right-hand side, define the ring morphism

ϕ : C[X, Y] −→ Cn :

X 7−→ B1i,

Y 7−→ B2i.

It is surjective because i is cyclic and B1 and B2 commute, so ker(ϕ) is an ideal of codimension
n. Moreover, if we take another representation in the same orbit as (B1, B2, i, 0), the kernel of
the resulting map is the same, since for any g ∈ GLn(C) and f (X, Y) ∈ C[X, Y] we have

f (B1, B2)i = 0 ⇐⇒ g f (B1, B2)i = 0 ⇐⇒ f (gB1g−1, gB2g−1)gi = 0.

These constructions are mutual inverses, as a moment’s thought swiftly reveals. We make the
identifications explicit in two straightforward examples.
EXAMPLE 4.2.6. The case n = 1 is very simple. We have B1 = λ and B2 = µ in C and i 6= 0 by
cyclicity, meaning we can set i = 1. The corresponding ideal is

I = { f ∈ C[X, Y] | f (λ, µ) = 0} = (X− λ, Y− µ)

by Hilberts Nullstellensatz. This also witnesses the obvious (A2
C)

[1]
= A2

C.

More interesting things occur for n = 2 (cf. Example 2.4.1).
EXAMPLE 4.2.7. Suppose that B1 or B2 (pick the former without loss of generality) has two
distinct eigenvalues, λ1 6= λ2. Then up to the action of GL2(C) we set

B1 =

(
λ1 0
0 λ2

)
and B2 =

(
µ1 0
0 µ2

)
.

This is possible because the matrices commute, so they are simultaneously diagonalisable.
Write i = (i1 i2)

>. It cannot be an eigenvector of B1, so i1 6= 0 6= i2. The action of a diagonal
matrix in GL2(C) obviously fixes B1 and B2, so we are free to use them to set i1 = 1 = i2.

Now it is easy to see that the ideal we obtain is

I = { f ∈ C[X, Y] | f (λ1, µ1) = 0 = f (λ2, µ2)} = (X− λ1, Y− µ1) · (X− λ2, Y− µ2).

Geometrically, this is two distinct (unordered) points in the affine plane.

Next, suppose both B1 and B2 have two equal eigenvalues each, say λ and µ, respectively. If
both were semisimple, then i would span a line that is not allowed by cyclicity. Hence one of
them has a nontrivial Jordan form.
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Pick representatives

B1 =

(
λ x
0 λ

)
and B2 =

(
µ y
0 µ

)
for some (x : y) ∈ P1

C. For the matrices to commute, we must have xy = λy + µx. Clearly,
(1 0)> is an eigenvector of both matrices, and therefore i2 6= 0 so as not to violate cyclicity.
Using a scalar matrix, set i = (0 1)>. To see what the ideal is, note that for any m, n ∈N,(

λ x
0 λ

)m(
µ y
0 µ

)n(
0
1

)
=

(
λ

mµn λ
m−1µn−1(nλy + mµx)

0 λ
mµn

)(
0
1

)

=

(
λ

m−1µn−1(nλy + mµx)
λ

mµn

)
.

It is then evident that

I =
{

f ∈ C[X, Y]
∣∣∣∣ f (λ, µ) = 0 and x ∂ f

∂X

∣∣∣
(λ,µ)

+ y ∂ f
∂Y

∣∣∣
(λ,µ)

= 0
}

.

Geometrically, this corresponds to a diagonal point ((λ, µ), (λ, µ)) ∈ ∆ ⊂ A2 ×A2 — together
with a tangent vector x ∂

∂X + y ∂
∂Y for each projective point (x : y) along which the two coinciding

points are infinitesimally attached.

Combining these two cases for n = 2, a representation (B1, B2, i, 0) of Q with [B1, B2] = 0
and cyclic i corresponds to either a pair of distinct points in A2, or a diagonal point of
A2 ×A2 together with a P1 of ‘fat’ points over it. This once more exhibits the fact that
(A2)

[2] ∼= Bl∆
(
S2A2).

A natural question to ask is whether there is a similar description of representations of the
quiver Q := QADHM drawn below (it is known as the ADHM quiver)

n k
i

j

B1

B2

for any k ∈N in terms of Hilbert schemes. Unfortunately, the answer is ‘not quite’. There is a
very explicit, withal rather complicated, description of the moduli space of representations of
Q with developed by Nakajima, who generalised a similar statement for vector bundles.

We call the matrix i cyclic (by slight abuse of terminology, as this nomenclature is usually
reserved for single vectors) if there is no proper subspace of Cn that is invariant under both B1

and B2 and contains im i.

Let `∞ := {(0 : y : z)} ⊂ P2 be the line at infinity. Recall that for an integral scheme Y, an
OY-module F is torsion-free if and only if for every affine open U ⊂ Y, the sections F (U) form
a torsion-free OY(U)-module.
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THEOREM 4.2.8 (Nakajima). There exists an isomorphism of schemes

{
(B1, B2, i, j)∈

Rep(Q, α)

∣∣∣∣∣ i is cyclic, and
[B1, B2] + ij = 0

}/
GLn(C) ∼=



pairs of a torsion-free sheaf F on P2

of rank k, with second Chern class
c2(F ) = n, together with a framing

F
∣∣
`∞

∼−→
(
OP2

∣∣
`∞

)⊕k

in a local neighbourhood of `∞,
up to isomorphism of sheaves


.

Proof. See [Nakaj99, Theorem 2.1]. Useful comments are supplied by Remark 2.2 and most of
Section 2.1 of loc. cit. ���

This description is far from intuitive, although one can check it reduces to (A2)
[n] if k = 1.

It does, however, show that the moduli spaces in which we are interested are complicated,
and harbingers the appearance of ‘spaces of sheaves with certain requirements’ that will be
paramount in the mathematical treatment of Vafa and Witten’s findings in the final chapter.

That all said, one would nevertheless like a concrete yet manageable characterisation of this
quiver in the case k > 1, since the first ADHM equation does still appear. As we saw, for k = 1
cyclicity forces j = 0 in which case there exist no meaningful ADHM data by Proposition 3.3.7.
Another problem is that the ADHM equations are given by setting the two momentum maps
for the quiver above to zero. That is, we require

µC(B1, B2, i, j) = [B1, B2] + ij = 0 and µR(B1, B2, i, j) = [B1, B:

1] + [B2, B:

2] + I I: − J: J = 0,

whereas Theorem 4.1.12 suggests the latter should be set to ϑ in order to get a smooth moduli
space. Thanks to Section 3.4, this can be done on noncommutative R4, but what should ϑ

be? We might hope that the case k = 1 — where cyclicity of the vector i was equivalent to
being ϑ-(semi)stable for the generic character ϑ = (1,−n) — generalise to a generic character
ϑ = (k,−n). Unfortunately, this is not so.

Whilst semistability for this character does imply the matrix i is cyclic by the same argument
as for k = 1, the converse is false, and this will be the case in general for k > 1, as one has no
control over the images of i and j.

∗ ∗∗

In summary, having embarked on this section with ample hope that things would work
out beautifully, we are forced to concede defeat. For k = 1 and ϑ = (1,−n), we obtain an
extraordinary chain of isomorphisms connecting algebraic geometry to representation theory
to physics;

(A2
C)

[n] ∼=M(Π(Q), α, ϑ) ∼=
(

µ−1
C (0) ∩ µ−1

R (ϑ)
)/(

U(n)× U(1)
) ∼=MR4

nc
(n, 1).

This connection notwithstanding, the desired generalisation to higher values of k remains elu-
sive. The scheme describing the representations of QADHM with ‘cyclic’ matrix i and satisfying
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the first ADHM equation looks rather queer, being the moduli space of certain sheaves on the
projective plane. Unfortunately, the cyclic property can no longer be reinterpreted in terms
of a stability condition and moreover the ADHM equations on the right vertex, which were
automatic for k = 1, need no longer be satisfied. Nor does the moduli space admit a description
in terms of the Hilbert scheme of a certain surface. As such, we cannot even conclude that
it is smooth as we could for k = 1, where this followed both from the fact that the character
ϑ = (1,−n) was generic and from Fogarty’s Theorem.[3]

That all being said, we hope to have at least convinced the reader that there should be some
connection between Yang–Mills instantons and Hilbert schemes even for higher values of k, at
least as motivation for the string theoretic discussion to come in a subsequent chapter.

[3]As luck would have, the schemes in Theorem 4.2.8 are smooth for certain n and k (q.v. Chapter 9), but this
requires additional work to show.
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— ANTON PAVLOVICH CHEKHOV (1860–1904),
Borkin in , act 1.III.

5GENESIS OF GENERA AND HILBERT SCHEMES’
COHOMOLOGY

V
ARIOUS concepts in cohomology shall be of prime importance in the discussions
both physical and mathematical that are to follow — this chapter is devoted to their
treatment. We assume that the reader is comfortable with the basics of supersymmetry

and how it naturally leads to cohomology in the quantum mechanical setting as described
in Appendix A.3. Moreover, we do not recapitulate the fundamentals of string theory, nor
how supersymmetry appears together with fermions. The reader is assumed to possess basic
knowledge hereof, for example as treated in [BlumLüstThei].

We discuss partition functions, Euler characteristics and elliptic genera in physics and see how
these concepts generalise to so-called orbifolds. Furthermore, we see a first glimpse of the
modularity properties of the partition functions predicted by Vafa and Witten. Along the way
we encounter Lothar Göttsche’s famous cohomology formula and explain its generalisation to
the elliptic genus due to Dijkgraaf, Moore and the Verlinde brethren.

5.1 Genus, generis, generi, genus, genere

This section is mostly based on [Dijk1]. Consider an N = 2 supersymmetric quantum field
theory on some (compact, orientable) complex manifold X, with Hilbert spaceH. The partition
function — roughly speaking the function that counts the number of excited states inH at each
level — of such a theory is something like

Z(q, y) = sTrH qHyF,

where H is the Hamiltonian and F, the fermion number. In the simple scenario where H is
the space of differential forms on X (complexified and completed) as in Example A.3.7, this
F simply keeps track of the grading ofH. Furthermore, q and y are for now formal variables
that we shall shortly reinterpret physically. Compare qH to the more familiar expression e−βH

from ordinary quantum mechanics. We already encountered the partition function (as a path
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integral) in terms of q = e2πiτ in the Chapter 3. These two points of view shall of course be
reconciled.

The ground states of a supersymmetric system on X are measured by the cohomology
H•(X), with, say, complex coefficients. Recall that the Witten index in this case is simply
TrH•(X)(−1)F = χ(X), as we have the fermionic (ground) states in odd, and the bosonic ones
in even degree. This is the same as setting y = 1, because in fact Z(q, 1) does not depend on q
(for the same reason that it did not depend on β in the quantum mechanical case), wherefore
we set q = 1. Finally, we can interpret X as the space HomTop(pt, X). The two are of course
homeomorphic if the latter is equipped with the compact-open topology. This is completely
unnecessary, but allows swift generalisation to the string case.

∗ ∗∗

With this in mind, consider now a supersymmetric string theory on X, say for concreteness a
sigma model in 1+ 1 spacetime dimensions. A single string on X corresponds to a (continuous)
map S1 −→ X, from which we conclude it is perhaps fruitful to study the (unpointed!) loop
space LX = HomTop(S1, X).[1] The Hilbert space is then the differentials on this loop space.[2]

In fact, this leads to a superconformal field theory living on X (or, more precisely, TX), with
central charges c and c in the holomorphic (left-moving) and antiholomorphic (right-moving)
sector, respectively. Intuitively, this is plausible because we have two circles at play, together
forming a torus: one from the periodic time that evinces the computation of the partition
function and one from the string proper.

The Hamiltonian H, which can be taken to be the Laplacian operator on LX, is written
L0 + L0 − c+c

24 as usual in terms of the degree-zero Virasoro generators and the central charges.
Recall that a free boson contributes a central charge of 1 to a string theory, whereas a fermion
gives 1

2 . Therefore, adding the contributions of all real bosonic and fermionic coordinates and
using c = c, we find

c + c
24

=
3
2 · dimR X

12
=

dimC X
4

.

The momentum is written P = L0 − L0 and generates the S1-action on LX by rotation.

The torus is the complex manifold underlying an elliptic curve E. Set the modulus of this torus
to be τ. That is, when we view the elliptic curve as the quotient of C by a lattice, the lattice
is Z + τZ up to homothety, with τ a point of the upper halfplane H. Write q = e2πiτ. This
τ will be the complex Yang–Mills coupling constant from Chapter 3 when we consider an
explicit system of D-branes in a forthcoming chapter and study the worldvolume gauge theory.
Comparing this to the usual e−βH from quantum mechanics, we see that with zero theta angle,
τ can be interpreted as an imaginary, periodic time variable.

[1]The topology is again the compact-open one. A smooth structure can be obtained through a technical but
standard construction of an atlas using the charts of the two manifolds involved.

[2]We implicitly assume the fermions to sit in the Ramond sector for compatibility with the supersymmetry
algebra. We require periodic boundary conditions on the corresponding supercharges in this algebra for these to be
globally defined. (Outside the Ramond sector, they would pick up a sign or even a more general phase.)
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Next, by definition fermions living on X are sections of some line bundle F on E. By the
isomorphism between Picard and class groups, we identify (the isomorphism class of) F
with some divisor class DF . We need the following easy lemma. Beside its application to our
purposes, it yields the wonderful (though elementary) result that Pic E ∼= E⊕Z of which the
author was somehow unaware.

PROPOSITION 5.1.1. Let E be an elliptic curve. Then the sequence

0 E Pic E Z 0
deg

is split short exact.

Proof. Recall that E ∼= Jac(E) = ker(deg) by x 7−→ [x − O], with O the neutral element.
Moreover, the degree map is surjective, for E has a rational point (namely, O). The assignment
n 7−→ n[O] is a section of the degree map. ���

Let r be a retraction splitting the sequence above, and define z := r(DF ). Then write y = e2πiz.
This function of z can be interpreted as a holomorphic function parametrising the boundary
conditions of the theory’s fermions, which we shall very shortly fix.

The partition function in this scenario is what one would expect it to be, now accounting for
the left- and right-moving sectors;

Z(q, y, q, y) = sTrH
(

qL0− d
8 qL0− d

8 yFL yFR
)

.

Here, d is the (complex) dimension of X and the total fermion number has been split as
F = FL + FR. Since H is defined using the loop space of X, it should be no surprise that this
function is horribly complicated. Fortunately, we are saved by supersymmetry, which dictate
that H have nonnegative eigenvalues. In particular, L0, L0 > d

8 so we have a ‘bottom of the
ladder’ from which to consider low-energy expansions.

It turns out to be useful to consider this classical limit α′ −→ 0 in which the string tension is
taken to infinity. In this limit, the string, like a highly stretched elastic band, ‘collapses’ to a
point. In other words, in this limit we need only consider the constant loops inside LX, which
form a copy of X. Therefore we take H to be the differential forms on X itself rather than
on its loop space and the ground states are given by the Dolbeault cohomology (for we now
distinguish left- and right-movers) H•,•D (X).

Suppose X is Kähler now. We henceforth assume periodic boundary conditions for the fermions,
otherwise known as the Ramond–Ramond sector, in order to be able to admit massless ground
states. As with the ‘ordinary’ partition function, from which we obtain the Euler characteristic
of X by setting y = 1 (see Appendix A.3), we can now similarly restrict the supertrace to
y = 1. This can be interpreted physically as forcing the right-movers into their ground states,
or L0 = d

8 . This ‘restricted’ partition function then counts such states for which only the
ground state contributes in the right-moving sector. These states are BPS (Bogomol’nyi–Prasad–
Sommerfield), meaning their mass assumes its lower bound, the (absolute value of) the scalar
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by which the supersymmetry central charge acts in the representation to which the states
belong. Mind that we took N = 2 supersymmetry in this section; indeed, the supersymmetric
ground states of the D-branes’ N = 4 gauge theory we will consider correspond to BPS states
preserving half of the spacetime supersymmetry. These are therefore called half-BPS states.[3]

Actually, for essentially the same reason that the Witten index computes the Euler characteristic
independently of q, we may also set q = 1 (equivalently: set L0 to its lower bound) without
affecting the outcome. This ‘stringy’ generalisation of the Euler characteristic is known as the
elliptic genus of X (implicitly defined in the Ramond sector).

DEFINITION 5.1.2. The elliptic genus χ(X; q, y) of X is defined to be the power series

χ(X; q, y) := sTrH
(

qL0− d
8 yFL

)
.

This definition is purely from the perspective of string theory, originally due to Dixon et al.
in [DHVW1]. More general mathematical definitions exist and a good overview is found in
[Landwe]. Here follows one.

REMARK 5.1.3. Hirzebruch–Riemann–Roch allows the alternative description

χ(X; q, y) =
∫

X
ch(Eq,y)td(X)

involving the Chern character of the formal vector bundle

Eq,y := y−
d
2
⊗
n∈N

(∧
−yqn−1TX⊗

∧
−y−1qnTX⊗ SqnTX⊗ SqnTX

)
,

where again d = dimC X. The exterior and symmetric operators with subscript that appear are
defined as follows. If E is any vector bundle over X, set formal sums∧

rE :=
⊕

m∈N0

rm∧mE and SrE :=
⊕

m∈N0

rmSmE.

This may seem somewhat queer at first sight, but the intuition should be that of a Fock space-
esque vector bundle. We know bosonic and fermionic states can respectively be seen as even-
and odd-degree differential forms. Up to taking the dual, then, this formal vector bundle can
be seen as something of an analogue of a Fock space for bundles.

∗ ∗∗

The elliptic genus has various desirable properties. For instance, it is modular, by virtue of
the modular invariance of CFTs. Setting y = 1 retrieves the Euler characteristic and, like the
Euler characteristic, the elliptic genus defines a ring morphism from the Grothendieck ring of
varieties (or a subring of Kähler varieties thereof) to ZJq, yK in the sense that it is multiplicative
for products and additive for disjoint unions.

[3]This observation is due to — whom else? — Witten, whose name, the reader shall agree, has been apotheosised
into modern physics’s household sobriquet.
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REMARK 5.1.4. In fact, if X is Calabi–Yau (e.g. a hyperkähler surface), its elliptic genus is a
weak Jacobi form of weight nought and index d

2 . For a discussion of this, see [KawYamYan]. (The
definition of such forms is recalled in Appendix A.4.3.)

These elliptic genera appear naturally in string theory when it is compactified onto a fivefold
given by the product of an algebraic surface and a circle. Before we get to this, we first consider
the four-dimensional theory, as was set up in Chapter 3.

∗ ∗∗

In the Introduction, we announced that we would implement a supersymmetric Yang–Mills
gauge theory via D-branes in type IIA string theory compactified on an algebraic surface. The
goal is to use these D-branes to encode a system of k instantons with charge n. The reason
that we should want to build this system in a string theoretic setting lies in Vafa and Witten’s
discovery that their partition function (3.2.4) on an abelian or K3 surface is related to that of a
fermionic or bosonic string theory, respectively. We will derive this in Chapter 6.

If one additional dimension is compactified, we obtain D-branes of one dimension higher on
X× S1 in type IIB theory, where X is the surface we had. By T-duality, this system is equivalent
but can now be interpreted as strings, rather than points, on X, called instanton strings. The
topological invariant that naturally appears in such a sigma model is the elliptic genus. The
target space of such theories is the moduli spaceMX(n, k) introduced herebefore. Of greatest
interest shall be a K3 or abelian surfaces, as we shall see (in fact, any hyperkähler variety leads
to the elliptic genus).

The appearance of the moduli space is explained by the states of such systems of D-branes in
the BPS limit’s (where the elliptic genus makes its entrance as the partition function) being
described by supersymmetric but otherwise ‘ordinary’ quantum mechanics on this moduli
space. A more thorough explanation of this is found in [Dijk2], but the simplest way of
understanding this is as a generalisation of earlier considerations. A (quantum mechanical)
point particle on X has the differential forms on X itself, viewed tautologically as ‘the space of
points on X’, as its Hilbert space (and the cohomology for the ground states). For a string, the
part of X is played by its loop space LX of ‘strings on X’, but fortunately in the limit α′ −→ 0
we could get away with considering X itself. For instanton strings, the only candidate can then
beMX(n, k), the space of instantons on X with given parameters k and n. We will return to
the notion of instanton strings later.

Roughly speaking,MX(n, k) will in some cases (such as K3 surfaces) turn out to actually be
birational to the Hilbert scheme X[N], where N is some natural number depending on n and
k. With expressions such as (3.2.4) in mind, this leads us to consider Euler characteristics and
elliptic genera of Hilbert schemes and symmetric products. This is where Göttsche’s formula
makes its entrance, as does its elliptic generalisation the DMVV formula. Before we explain
how these formulæ appear, we first have to develop some theory of orbifold cohomology.
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5.2 Urbi et orbifold

The recurring problem of the symmetric product — its not preserving smoothness of the base
variety excepting points and curves — presents an obstacle to studying instanton moduli
spaces, if these be related to symmetric products. As we have seen, the ground states of a
supersymmetric quantum theory are identified with the cohomology ring of the underlying
target space. We have hitherto implicitly been using the isomorphism between de Rham and
singular cohomology, but if a space has no smooth structure, the former of course does not
exist. One could then resort to singular cohomology, but this has a drawback.

Keeping the case of the symmetric product of surfaces in mind, the space might have a smooth
resolution, whose topological invariants should ideally be related to those of the singular space
in a suitable manner. This beseeches us to be careful in dealing with cohomologies of symmetric
products. Simply taking the cohomology of the space SnX, which we shall see corresponds
to the Sn-invariants of the cohomology of X itself, misses much information, wherefore this
might not be the right type of cohomology to consider.

We elaborate on the matter by studying a class of (generally singular) spaces that physicists
call orbifolds. This is actually a more ecumenical mathematical term, but we adopt the physics
convention because of the context.[4] With that in mind, an orbifold is a smooth (complex) man-
ifold X equipped with the action of a finite group G of diffeomorphisms (biholomorphisms),
and denoted [X/G]. If G acts freely, then it is known that there is a unique smooth structure
on X/G making X −� X/G a smooth submersion.[5] In practice, however, such actions are
certainly not going to be free, the set of orbits X/G does not have the structure of a smooth
manifold and this is therefore of relatively little interest.

If X is the analytification of an algebraic scheme or variety with a group action, the group
action is understood to have been inherited from an action on the original algebraic variety or
scheme. In this case the categorical quotient X � G exists as the ‘correct’ algebraic quotient that
remembers the algebraic structure, unlike X/G. It is defined as usual; an affine cover is given
by the G-invariants of an affine cover of X itself. (Q.v. Proposition 2.1.2.)

The definition of the cohomology of an orbifold [X/G] that likewise does not forget the
information that is lost when considering the set quotient X/G is usually constructed by
means of the so-called inertia orbifold; an elaborate description is found in [Perr] for example.
We skip the technicalities and immediately give the definition in terms of the cohomologies
of the so-called twisted sectors. The main idea, to which the definition of the inertia orbifold
also tantamounts, is to average over the induced group actions on the de Rham cohomology
of the base manifold. It was the crucial insight of Dixon, Harvey, Vafa and Witten [DHVW1]
that this orbifold cohomology can be understood as taking the cohomology of the artificial
space obtained as the disjoint union of the fixed point sets for the group action on X, running

[4]The physicist’s orbifold is known as a global quotient in the mathematical literature, whereas, very roughly
speaking, general orbifolds are only locally such quotients, and the proper definition makes use of stacks.

[5]One could extend the definition to more general Lie groups, in which case the action would also have to be
smooth and proper. We stick to finite groups for simplicity.
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over the group elements. When taken together, it turns out that all of these twisted sectors of
X yield a functioning cohomology that emulates de Rham cohomology for smooth spaces.

∗ ∗∗

For g ∈ G, write Cg for its conjugacy class and Zg for its centraliser subgroup. Write Xg for the
points of X fixed by g and, if h ∈ G is another element, Xg,h = Xg ∩ Xh for the common fixed
points. Notice that Xg still carries the action of Zg. The coefficients in the definition are tacitly
(yet apophatically) assumed to be Q.

DEFINITION 5.2.1. Let [X/G] be an orbifold. Its orbifold cohomology is defined to be

H•orb(X/G) :=
⊕
Cg

H•(Xg)Zg ,

where the sum runs over all conjugacy classes Cg of G.

This is well defined, viz. independent of the chosen representative g of the conjugacy class
Cg. Namely, if h ∈ Cg, write h = xgx−1 for some x ∈ G. Then the action of x in particular
restricts to a homeomorphism Xg −→ Xh : p 7−→ xpx−1 and the centralisers Zg and Zh are
conjugate. We call the summand corresponding to Cg the sector twisted by g, unless g is the
neutral element, in which case it is untwisted. We explain in Section 5.4.2 why it is natural to
index the twisted sectors by the group’s conjugacy classes.

This definition allows one to define the proper invariant analogous to the Euler characteristic
for an orbifold.

DEFINITION 5.2.2. Let [X/G] be an orbifold. Its orbifold Euler characteristic is

χorb(X/G) :=
ÿ

Cg

ÿ

i∈Z

(−1)i dimQ Hi(Xg)Zg .

LEMMA 5.2.3. The orbifold Euler characteristic of [X/G] equals

χorb(X/G) =
ÿ

Cg

χ(Xg/Zg )

=
1

#G

ÿ

g∈G

ÿ

h∈Zg

ÿ

i∈Z

(−1)i TrHi(Xg)(h
∗),

where h∗ denotes the pullback of the diffeomorphism given by the action of h ∈ G on X.

Proof. The first equality follows from the isomorphisms (for each g ∈ G)

H•(Xg/Zg )
∼−→ H•(Xg)Zg

induced by the quotient map.[6] For a proof of this, consult for example Grothendieck’s famous
article [Groth57, Théorème V.5.3.1]. Moreover, these isomorphisms together with an elementary

[6]This isomorphism holds for any quotient X −→ X/G of a Hausdorff space X and a finite group of homeomor-
phisms G thereof.
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result in representation theory for the finite group G stating that

dimHi(Xg)Zg =
1

#Zg

ÿ

h∈Zg

TrHi(Xg)(h
∗)

give the second expression. We also use that we may average over all group elements, for the
definition of the cohomology is independent of the representatives of the conjugacy classes. To
do so, note that |Cg| = [G : Zg] by the Orbit–Stabiliser Theorem for conjugation. ���

COROLLARY 5.2.4. If G acts freely on X, then χorb(X/G) = χ(X/G).

REMARK 5.2.5. An equivalent definition, originally due to [DHVW1], is

H•orb(X/G) =
⊕
g∈G

⊕
h∈Zg

H•(Xg,h),

by virtue of Lefschetz’s Fixed Point Theorem. This leads to the alternative formula

χorb(X/G) =
1

#G

ÿ

g, h∈G
gh= hg

χ(Xg,h).

Now suppose that X is an algebraic variety or scheme and there exists a resolution of singu-

larities X̃ � G −→ X � G of the quotient. In 1986, Dixon et al. [DHVW2] noticed that, in some

cases, one would find χ(X̃ � G) = χorb(X � G). This is certainly not always true. Moreover, if
the action is not free, but the quotient is smooth nonetheless, this need not hold either, as the
following example demonstrates.

EXAMPLE 5.2.6. Let X = P1
C and G = Z/nZ ⊂ PGL2(C) = Aut(X), for n > 1, given by the

classes of the diagonal matrices with an nth root of unity and its conjugate. That is, if ζ is a
primitive root of unity, and g is a generator of G, then

gm · (x : y) := (ζmx : ζ−my).

We see that the fixed points are 0 := (0 : 1) and ∞ := (1 : 0) only. The quotient is smooth,
being P1

C again. To see this, work in a standard affine chart A1
C
∼= P1

C \ {∞}, which is closed
under the action. The induced action on its coordinate ring C[t], where t := X

Y , is gm · t = ζ2mt.
The ring of invariants is either C[tn] or C[tn/2] depending on parity, but either way this gives
back an affine line. The same result is true when the origin is excised. Gluing the affine lines
together then retrieves the projective line.

We conclude that
χ(X̃ � G) = χ(P1

C) = 2,

whereas, using that G is abelian,

χorb(X � G) =
ÿ

g∈G

χ(Xg/Zg ) = χ(P1
C) + (n− 1) · χ({0} t {∞}) = 2n > 2.

Note that this is not a resolution, but an n-fold branched covering with two ramification points.
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That said, the equality seems to be true in some cases, which happily includes those relevant to
us. A short but very useful exposition of these results is found in [HirzeHöfer]. The following
list is not exhaustive.

PROPOSITION 5.2.7. We have χ(X̃ � G) = χorb(X/G) in the following cases:

(i) ADE singularities A2
C � G, where G is a finite subgroup of SU(2).

(ii) X is an abelian surface quotiented by the involution −id.

(iii) The symmetric product of a smooth complex surface.

Proof. See [ibid.]. We remark that for an ADE singularity whose resolution (an ALE space) has
m exceptional (−2)-curves above the singularity (i.e., corresponds to a Dynkin diagram with m
vertices), the value of the two Euler characteristics is m + 1.

The resolution of the second case is called a Kummer surface, and is K3, q.v. Section 5.5. ���

The latter two cases are the most pertinent and some time shall be devoted to the third in
particular. We remark that, on the level of manifolds, the four-torus T4 is an abelian surface,
whose quotient by aforementioned involution has a resolution of singularities given by a K3
surface. We return to this at the very end of this chapter.

5.3 Göttsche’s formula and the counting of string states

We follow [Gött88, Kap. II.9], which Göttsche preludes with the statement: „[Wir zeigen] das
Hauptziel dieser Arbeit: Eine universelle Formel, die die Bettizahlen von Hilbn(S) aus den
Bettizahlen von S berechnet.“

First of all, if S is any smooth projective scheme over C, define its Betti numbers

bi(S) = dimQ Hi(S)

for i ∈ Z and let P(S; t) = ∑i bi(S)ti for its Poincaré polynomial. Notice that P(S,−1) = χ(S).
Also recall the Dedekind η-function, the modular form

η(τ) = q
1

24 ∏
m>0

(1− qn),

where τ ∈ H and q = e2πiτ. We now state Göttsche’s famous result [Gött88, Satz II.9.3].
THEOREM 5.3.1 (Göttsche, 1988). Let X be a smooth, complex projective surface. Then

ÿ

n>0

P(X[n], p)qn = ∏
m>1

4

∏
j=0

(1− (−1)j p2m−2+jqm)−(−1)jbj(X).

In particular, we therefore have

∞
ÿ

n=0

χ(X[n])qn =
∞

∏
m=1

(1− qm)−χ(X) =
(

q
1
24 η(τ)−1

)χ(X)
.
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Proof. Göttsche’s proof revolves around first establishing this formula for smooth projective
surfaces X over Fq, where q is the power of some prime p and the cohomologies of the schemes
involved have coefficients in Qp rather than Q. As he had announced, he then combines various
previous results from his thesis[7] with the Weil conjectures to prove the formula. Finally, he
uses another prior result to demonstrate how the statement for C follows from that for Fq.
Chapter 12 gives a number of simplifications using results of Ellingsrud and Strømme.

An alternative source is the article [Gött90] written two years later by Göttsche in which he
recapitulates the main points of his thesis. ���

This result is remarkably similar to much earlier formulæ for symmetric products due to
Ian Macdonald. „Die Formeln aus den Sätzen [...] haben eine starke Ähnlichkeit mit den
entsprechenden Formeln für die symmetrischen Potenzen,“ quoth Göttsche. The following
result is true for much more general topological spaces, but we restrict ourselves to the most
pertinent case for simplicity.
THEOREM 5.3.2 (Macdonald, 1962). Let X be a smooth, complex projective surface. Then

∞
ÿ

n=0

P(SnX, p)qn = ∏
j∈N0

(1− (−1)j pjq)−(−1)jbj(X).

In particular, we have
∞
ÿ

n=0

χ(SnX)qn = (1− q)−χ(X).

Proof. See [Macdon]. ���

Before turning to elliptic genera, it is a fruitful exercise to see what the analogue of Macdonald’s
formula is for the generating function of the orbifold Euler characteristic of symmetric powers.
The result is extremely familiar.

PROPOSITION 5.3.3. Let X be a smooth, complex projective surface. Then

∞
ÿ

n=0

χorb(SnX)pn =
∞

∏
m=1

(1− pm)−χ(X).

Combining this with Göttsche’s formula, we obtain the statement of Proposition 5.2.7(iii).

COROLLARY 5.3.4. We have χ(X[n]) = χorb(SnX) for all n ∈N0.

We follow [Dijk1] for the proof of Proposition 5.3.3.

Proof. We use the earlier result χorb(SnX) = ∑ χ
(
(Xn)σ

/
Zσ

)
, this sum running over the con-

jugacy classes Cσ of Sn, which correspond to the partitions of n. Write any partition λ ` n as

[7]„Nach der Vorarbeit, die wir in den letzten Abschnitten geleistet haben, ist diese Aufgabe jetzt sehr einfach.
Wir setzen nur noch unsere Ergebnisse zusammen.“
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λ = (1N1 , . . . , nNn) with ∑m mNm = n, i.e., each integer m appears Nm > 0 times. It is known
that the centraliser of the conjugacy class corresponding to λ is

Zσ = SN1 ×
(

SN2 n (Z/2Z)N2
)
× . . .×

(
SNn n (Z/nZ)Nn

)
.

The SNm act on the Nm-sized set of m-cycles of σ in the obvious manner, whilst the normal factor
(Z/mZ)Nm acts on this set by raising the m-cycles to the appropriate powers. The semidirect
products are taken over the obvious permutation action of SNm on the factors of (Z/mZ)Nm .

The reader easily convinces himself that a point (x1, . . . , xn) ∈ Xn is fixed by σ if and only if it
“has the same cycle type”, meaning there are Nm points appearing with multiplicity m, for each
1 6 m 6 n. It is therefore plain that (Xn)σ = ∏m XNm . Now Zσ acts on this factor-wise. That
is, for each m separately, SNm n (Z/mZ)Nm acts on XNm by permuting the components.[8] We
conclude that

(Xn)σ
/

Zσ =
n

∏
m=1

SNmX.

Having established this, the result is given by a straightforward computation:

∞
ÿ

n=0

χorb(SnX)pn =
∞
ÿ

n=0

pn
ÿ

Cσ

χ
(
(Xn)σ

/
Zσ

)
=

∞
ÿ

n=0

ÿ

{Nm>0} s.t.
∑ mNm=n

pnχ
(
∏
m

SNmX
)

=
∞
ÿ

n=0

ÿ

Nm>0 s.t.
∑ mNm=n

n

∏
m=1

pmNm χ(SNmX)

=
∞

∏
m=1

∞
ÿ

N=0

(pm)Nχ(SNX)

=
∞

∏
m=1

(1− pm)−χ(X).

The most important step is the fourth equality, which follows from the realisation that the
summation over all partitions of a fixed n of a product indexed by the integers possibly
appearing in these partitions and then summing over all n is the same as summing over all
possible ‘partition multiplicities’ N and then taking the product over all integers possibly
appearing in any partition with these multiplicities. This becomes immediately evident when
writing out the first few terms. The final equality is an application of Macdonald’s formula. ���

∗ ∗∗

The right-hand side in Proposition 5.3.3 is intimately familiar to anyone who has worked
with the Fock space of string states. We demonstrate how it is recovered in string theory by
considering simple partition functions ere treating the elliptic genus version of Göttsche.

[8]The normal factor would be expected to “act within one copy of X”, so it acts trivially.
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Consider a bosonic string theory in three dimensions for simplicity, with lightcone quantisation
in the first two directions. There is a unique set of creation operators α−n = α:

n, where n ∈N,
acting on the vacuum which we denote |0〉. These span the Hilbert space of states H. The
partition function for the left-movers (we ignore the right-movers, which behave in the same
manner, for simplicity) is

Z = TrH qH =
∞
ÿ

N=0

[№ of states at level N] · qN

after identifying the number operator N = ∑n nα:
nαn. A moment’s consideration swiftly reveals

that the number of excited states at the Nth level is given by the number of partitions of N.
Indeed, a partition λ = (1λ1 , . . . , NλN ) ` N corresponds to the state

αλN
−N · . . . · αλ1−1|0〉.

The generating series for this sequence is well known. Indeed, the final steps in the proof of
Proposition 5.3.3 compute this function. Alternatively, one may simply observe the following
equality by looking at the first few terms;

Z =
∞

∏
m=1

1
1− qm .

For a bosonic theory at the critical dimension 26, there are 24 sets of oscillators. The creation
operators we have are now {αi

−n | 2 6 i 6 25, n ∈N0}, as a result of which the Hilbert space
for this theory is just the twenty-fourth tensor power of the single-oscillator one. The partition
function is therefore

Z = TrH⊗24 qH =
∞

∏
m=1

1
(1− qm)24 . (5.3.1)

Those familiar with the Betti numbers of K3 surfaces will recognise the Euler characteristic
χ = 1− 0 + 22− 0 + 1 = 24 of such a space. (Those unfamiliar may consult [Huybr, §1.3.3].)
This appearance of a surface compatible with our machinery is most serendipitous. The fact that
we identify K3 surfaces is due to more than solely their smoothness and Euler characteristic,
however. In Section 5.5, we shall see that their intersection theory is also important; with this
additional constraint, one is led exclusively to K3 surfaces, where a priori one might think that
any smooth, complex projective surface with the correct Betti numbers might do.

Let X be a K3 surface — Göttsche now implies that for all N ∈ N0, a bosonic string theory
has χ(X[N]) = χorb(SNX) states at level N. If the instanton moduli space on a K3 surface is
indeed related to its symmetric product or Hilbert scheme (e.g. via birational equivalence[9]),
this should be more than enough reason to try realising Yang–Mills theory in a string theory
on X.

Similarly, consider a fermionic theory on X in the supersymmetric setting. As we saw, the
cohomology of the target space naturally enters into the picture, with bosons in even and

[9]Note that Euler characteristics are not a birational invariant. In our special case however, we shall have
resolutions of singularities, which do satisfy some manner of uniqueness for surfaces.
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fermions, odd degree. There are now bosonic and fermionic creation operators αi
−n and dj

−n,
respectively, the former indexed by a set of size b+ and the latter, b−. We define b+ as the sum
of the Betti numbers of X in even degree, and b− as that of those in odd degree. Now we
analogously see that the supertrace over the Hilbert spaceH of states, which features a minus
sign for the fermions, is

Z = sTrH qH =

(
ÿ

N even

−
ÿ

N odd

)
[№ of states at level N] · qN =

∞

∏
m=1

(1 + qm)b−

(1− qm)b+
.

The reader recognises this as the right-hand side in Göttsche for p = 1. In the critical ten
dimensions, there are eight sets of bosonic and fermionic oscillators each, meaning b− = 8 = b+.
If we write these as b− = 4 + 4 and b+ = 1 + 6 + 1, the reader will notice the Betti numbers of
a four-torus T4’s appearing using Künneth’s Theorem. (Again, this surface’s significance stems
from more than just its Betti numbers.)

We conclude that the partition function of an ordinary bosonic string theory (in the critical
dimension) is related to the Hilbert schemes of a K3 surface, whereas that of a fermionic one,
to those of an abelian surface. Moreover, both partition functions are modular:

∞

∏
m=1

1
(1− qm)24 = qη(τ)−24 and

∞

∏
m=1

(1 + qm)8

(1− qm)8 =

(
η(2τ)

η(τ)2

)8

.

This is a first, albeit simple, indication of the modular properties of which Vafa and Witten
conjectured that these kinds of partition functions be possessed. We reiterate that we still are
to establish the connection between Hilbert schemes and instanton moduli spaces to see the
precise connection. We postpone this to the next chapter.

One thing of importance to note is that the above computations summed over N, the integer
marking the level of excitation. This N is ‘free’, in the sense that it did not depend on any other
physical quantities; this will be different soon.

5.4 The DMVV formula in string theory

We now generalise the above discussion of orbifold Euler characteristics to elliptic genera of
an orbifold [X/G]. Its interpretation in string theory will receive ample attention.

5.4.1 Engendering the generalisation of Göttsche to elliptic genera

We use the division into twisted sectors that served to define orbifold cohomology to define
the orbifold elliptic genus χorb(X/G; q, y). The formula is as in Definition 5.1.2, except that now
the Hilbert spaceH is that associated to the disjoint union of the twisted sectors, running over
the conjugacy classes of G. Equivalently, we take the definition in Remark 5.1.3, replacing the
integral over X by a sum of integrals over the twisted sectors. With these definitions and the
fact that the elliptic genus of a product is the product of the elliptic genera and similarly for
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coproduct and sum, it is immediate that for all n,

χorb(SnX; q, y) = χ(X[n]; q, y).

We can summarise some of the same results as we found for the Euler characteristic. Here
follow their analogues, the second of which we just discussed.

PROPOSITION 5.4.1. Let [X/G] be a complex algebraic orbifold.

(i) If X � G is smooth, then χorb(X/G; q, y) = χ(X; q, y) up to a constant prefactor.

(ii) If X̃ � G −→ X � G is a crepant resolution, then χorb(X � G; q, y) = χ(X̃ � G; q, y) up to a
constant prefactor.

(iii) If X � G is Calabi–Yau, its (orbifold) elliptic genus is a weak Jacobi form.

Proof. See [BoLi00] and [BoLi03]. ���

We can now obtain an elliptic generalisation of Göttsche’s formula, to which accomplishment
the remainder of this section is devoted. Recall the previous situation: an N = 2 supersym-
metric string sigma model compactified on an algebraic Kähler manifold X. The fermions live
in the Ramond–Ramond sector and the right-moving ones are in their ground state. In 1997,
Dijkgraaf and the Verlinde brethren conjectured [DijkVerVerI, Eqn. (4.6)] and proved [DMVV]
that the elliptic genus partition function of this theory on symmetric products of X should
satisfy the following analogue of Göttsche (as power series in ZJp, q, yK).
THEOREM 5.4.2 (Dijkgraaf, Moore, Verlinde, Verlinde, 1996). The orbifold elliptic genera of the
symmetric products of X satisfy

ÿ

N>0

χorb(SNX; q, y)pN =
ÿ

N>0

χ(X[N]; q, y)pN = ∏
n>0
m>0
`∈Z

(1− pnqmy`)−c(nm,`).

The coefficients c(nm, `) appearing are implicitly defined by this expression itself. One need
only consider the term linear in p. On the left, this is χ(X; q, y), whilst on the right, one must
set n = 1 and notice the geometric series. This yields the Fourier coefficients

χ(X; τ, z) =
ÿ

m>0

ÿ

`∈Z

c(m, `)qmy`.

The proof of the formula is completely analogous to that of Proposition 5.3.3, but somewhat
more complicated. The only new ingredient is the decomposition of each twisted sector of the
Hilbert space according to that of the corresponding centraliser subgroup into a product of
semidirect products, as in aforementioned proposition. It is described in detail in Section 2 of
op. cit.

REMARK 5.4.3. Notice that the right-hand side is not wholly symmetric in n and m, even
though the Fourier coefficients c(nm, `) are. One could ‘repair’ the discrepancy by multiplying
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both sides with the missing factors, obtaining∏
m>0
`∈Z

(1− qmy`)−c(0,`)

 ÿ

N>0

χ(X[N]; q, y)pN = ∏
n,m>0
`∈Z

(1− pnqmy`)−c(nm,`).

This function is called Φ10(p, q, y) and is symmetric under swapping p with q (and n with m).
It is actually related to black hole entropy, as we shall see in Chapter 7.

5.4.2 Strong links to long strings

Let us proceed with the string theoretical interpretation of the DMVV formula. Each term on
its left-hand side corresponds to a partition function of a (single) string on the appropriate
symmetric product of X times a circle around which the string is wound (taking into account
only one chirality). The right-hand side is reminiscent of Göttsche and should be seen as the
partition function of some large Fock space of string oscillators. These depend on the quantum
numbers n, m and ` and there are |c(nm, `)| for any such triple. They are bosonic (fermionic)
if c(nm, `) is positive (negative). In fact, Nakajima’s construction of a representation of the
cohomology of Hilbert schemes of surfaces (q.v. Chapter 8) may be seen as the analogue hereof.

Conform the definition of the elliptic genus, ` is to be interpreted as the value of FL and m,
as the bosonic energy or momentum. The number n is slightly trickier but should be read as
the winding number of the string states. The product nm, on which the Fourier coefficients
depend, is then familiar from string momenta under compactifications on circles. We shortly
return hereto when discussing the heterotic string, as well as in the next chapter.

These considerations explain why the elliptic genus only appears in a five-dimensional com-
pactification of string theory. Unlike instantons, which are simply points existing in an instant
of spacetime, the extra circle allows for instanton strings, meaning winding numbers may
appear. Eliminating these, we simply retrieve the ordinary Göttsche formula.

Recall that we shall soon implement our favoured Yang–Mills instantons into string theory via
a D0–D4-brane system in IIA theory, with the algebraic surface X serving as worldvolume of
the D4-branes. Upon compactifying onto X× S1, this becomes a D1–D5-brane system in IIB
theory. In dealing with this, it is important to keep the concept of the instanton string in mind;
the instanton moduli space is still that of instantons on X (and not X× S1), and the extra circle
is there for the theory to admit ‘stringy behaviour’.

∗ ∗∗

The crucial observation to see why such strings should lead to elliptic genera of Hilbert schemes
(sc. orbifold genera of symmetric products) is that a string wound once around SNX× S1 can
be interpreted as the assignment of a point of SNX to each point of the circle — but a closed
string on SNX need not be obtained from a closed string on XN .
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The condition is weaker: such a closed string is associated to any string on XN satisfying twisted
boundary conditions: the end point need not be equal to the starting point, but the two should
lie in the same SN-orbit. Starting anywhere on the circle, the N points of X ‘lying above’ it each
trace out a string as one moves around once, but the end points of these strings may be the
starting points of other strings, provided both are in one orbit. This is best illustrated by Figure
5.1 below.[10]

X

S1

X

Figure 5.1: Three long instanton strings appearing in S9X corresponding
to the twisted sector with conjugacy class (4, 3, 2) ` 9 in S9.

In the limit α′ −→ 0, the configuration of ‘long’ strings in the twisted sector of SNX correspond-
ing to a partition λ ` N becomes a configuration of points in the stratum Sn

λX (notation as
in Remark 2.1.4). The lift of this configuration to XN lands in the set fixed by the conjugacy
class of type λ, wherefore this quantum mechanical system leads naturally to the orbifold
cohomology that was defined in this chapter.

The string states whose partition function the elliptic genus computes have excitations only
in the left-moving sector. We forced the right-movers into their ground state. These states are
BPS. Should we choose X, the worldvolume of the D4-branes in IIA theory, to be a K3 surface,
then the duality with heterotic string theory on T4 provides a direct argument for the fact that
the constants c in the DMVV formula depend only on the product nm and not on n and m
separately.

[10]It has been drawn by the author based on a similar figure from [Dijk1], with permission.
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5.5 Heterotic strings and their dualities

The duality between heterotic string theory that is compactified on T4 — the manifold underly-
ing a complex abelian surface — and IIA string theory on a K3 surface proposes a mapping
between these two theories that (as is by now familiar) identifies the strong coupling regime
on one side with the weak one on the other. For an exposition on the generalities of heterotic
string theory, Section 10.4 in [BlumLüstThei] is very readable.

The starting point is the fact that left- and right-moving modes of a string in compactified
directions are completely decoupled. As such, one can construct an (a priori uncompacti-
fied) ten-dimensional string theory (of closed strings) that is bosonic in the left-moving, and
fermionic in the right-moving sector. Concretely, its field content is ten bosonic left-movers
in the ten noncompact directions, sixteen ‘internal’ bosonic left-movers on some compact
16-fold, ten fermionic right-movers (also in the noncompact directions) as well as their bosonic
superpartners, and of course the usual friendly ghosts b, c, their right-moving partners, and
β, γ.

The point is now that the sixteen internal bosons have to ‘go somewhere’ to account for the
difference in dimensions. By compactness, their momenta are quantised on some sixteen-
dimensional Narain lattice (see Appendix A.4.4), which turns out to be almost completely
determined. The modular invariance of the heterotic partition function that follows from
conformal field theory forces the lattice to be selfdual. There are only two possibilities for
this: the root lattice of type E8 × E8 and the weight lattice of type D16 (that is, for so(32); the
structure group is SO(32) ∼= Spin(32)

/
(Z/2Z) ). Moreover, the two heterotic string theories

thus defined are one another’s T-dual.

The asserted duality between (E8 × E8)-heterotic theory on T4 and IIA on a K3 surface has
much evidence in its favour (see e.g. loc. cit. §18.5) and extends to a further compactification
onto two circles (i.e., heterotic on T6 and IIA on K3× T2) as well as to the intermediate theories;
heterotic on T5 and IIB on K3× S1.

∗ ∗∗

A bosonic basis state at level N in a heterotic theory on a four-torus is of the form

25

∏
i=2

∏
n∈N

(
αi
−n

)Ni
n |0〉,

such that ∑i,n nNi
n = N. This left-moving excitation level is an eigenvalue of the left-moving

Hamiltonian

L0 =
p2

L
2

+
ÿ

i,n

αi
nαi,:

n .

The right-moving Hamiltonian is simply L0 =
p2

R
2 as there are no excited states for this chirality.

Here, the left- and right-moving momenta are elements of the Narain lattice Γ20,4. This is
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isomorphic to H•(K3; Z) with intersection product. In each compact direction µ with radius
Rµ, we know pµ =

nµ

Rµ
is quantised and there are winding numbers mµ such that

pµ
L =

nµ

Rµ
+

mµRµ

α′
and pµ

R =
nµ

Rµ
−

mµRµ

α′
.

This is well known for compactified bosonic string theories. Level matching becomes the
statement that the momenta’s Narain norm is

α′

2
(

pµ
L pL,µ − pµ

R pR,µ
)
= 2n ·m = 2N.

Under five- and six-dimensional compactifications, this story is the same, except the Narain
lattices are of signature (21, 5) and (22, 6), respectively.

The point of this discussion is that it shows how the product nm, on which the Fourier
coefficients in the DMVV formula depend, appears naturally in our IIA instanton system (or
IIB instanton strings) if X is K3. Summing over all possible excitation levels N affably yields the
right-hand side in the DMVV formula. But one should keep in mind that one is then actually
summing over nm and not n and m separately. When transported through the duality, this
product of the momentum and winding number becomes the product nk of the instanton
number and the rank of SU(k).

A couple of objects or quantities that are exchanged under the duality are listed in Table 5.1.

Heterotic theory on T4 IIA theory on a K3 surface
strong coupling weak coupling
closed string NS5-brane wrapping the surface
Narain lattice Γ20,4 H•(K3; Z) with intersection form
excitation level N = n ·m excitation level N = nk

Table 5.1: Examples of correspondences under the duality.

In particular, this explains the alleged importance of K3 and abelian surfaces in Section 5.3.

∗ ∗∗

We end this chapter with a brief excursus explaining the connection between four-tori and K3
surfaces. If the two types of string theory compactified on these fourfolds, as just discussed, be
dual to one another, then one should expect the two manifolds to be somehow related. Indeed,
they are.

K3 surfaces arise in many manners, one of which is the Kummer variety encountered in Proposi-
tion 5.2.7. For a more detailed account with references, see [Huybr, Example 1.3iii)].

Let S be an abelian surface (over C for simplicity) and consider the involutive automorphism
ι : S −→ S : x 7−→ −x. Its fixed points are precisely the sixteen two-torsion points of S.

76



REMARK 5.5.1. For the reader unfamiliar with abelian surfaces: the surface is just the quotient
of the complex plane by a lattice, say

S ∼= C2/(aZ + bZ + cZ + dZ) .

One can simply count by hand that the two-torsion points are 0, a/2, . . . , d/2, (a + b)/2, and
so on. Therefore we must pick a coefficient to appear in the numerator for each out of a, b, c, d,
for which there are 24 = 16 possibilities. This also shows that, in general, for an n-dimensional
abelian variety, the m-torsion subgroup has order m2n.

In the quotient, these fixed points become Kleinian singularities, whose resolution S̃/ι is called
a Kummer surface and is K3. The physicists’ notation for this is generally something like
K3 ∼−→ T4/(Z/2Z) . This also explains (with much flailing of the hands) why the second Betti
number of a K3 surface is 22; that of a four-torus is (4

2) = 6, to which the sixteen exceptional
fibres from the resolution each contribute an independent cocycle.
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Told the most piteous tale of Lear and him
That ever ear receiv’d; which in recounting
His grief grew puissant, and the strings of life
Began to crack.

— WILLIAM SHAKESPEARE (1564–1613),
King Lear, ll. 5.3.249–51.

6HILBERT SCHEMES IN THE DEMESNE OF

INSTANTONS ON A D-BRANE

T
HE results from the previous chapters are now finally collected and applied to study
string theory proper and her relation to Hilbert schemes. This chapter is perhaps less
mathematically rigorous than were the preceding ones. We, however, hope to have

provided sufficient motivation for each step in the forthcoming to assuage the reader. We begin
by explaining the D-brane action in general before treating two cases in detail: R4, using the
ADHM construction, and a K3 surface, for which we replicate Vafa and Witten’s result.

6.1 Brane New World

Recall that by definition a Dp-brane in a (type II) superstring theory is a (p + 1)-dimensional
manifold with p spatial and one temporal direction for which Neumann boundary conditions
hold. The remaining 9− p directions carry Dirichlet boundary conditions.

Consider a type IIA superstring theory in ten dimensions, compactified on some algebraic
fourfold X. Let there be k ∈ N coincident D4-branes wrapping X and n ∈ N number of
D0-branes. The former have worldvolume X×R, including the (noncompact) time direction,
whereas the latter are points (moving on a worldline in time). Recall that a system of k co-
located D-branes between which open strings can stretch features an instrinsic U(k) gauge
theory in the string spectrum. We shall make use of this to conjure a Yang–Mills instanton
moduli space on X with instanton charge n and structure group SU(k), as announced prior. The
N = 4 supersymmetric spacetime half-BPS states will then correspond to the supersymmetric
ground states, i.e., the cohomology of this moduli space.

Before delving into the specifics of the D-brane action, let us briefly explain how we pass to
SU(k) from U(k).
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LEMMA 6.1.1. There exists a short exact sequence of groups

1 SU(k) U(k) U(1) 1det

that splits by the section of det sending u ∈ U(1) to the diagonal matrix u⊕ idk−1.

Beweis. Klar. ���

Therefore, U(k) is some semidirect product SU(k)oU(1) wherein the left factor describes the
internal brane dynamics — in which we are interested — and the abelian right factor governs
the centre of mass motion, which is scarcely of interest.

REMARK 6.1.2. Actually, due to anomalous charges’ appearing, the effective charge of the D0-
branes is n− k. For details, consult [Vafa] (beware his N and k are our k and n, respectively).

The effective Dp-brane action, given explicitly in [BlumLüstThei, Chapter 16], is described by
the Dirac–Born–Infeld action together with a Chern–Simons term that both describe different
couplings. The former governs that of the brane to massless string modes in the NS–NS sector,
such as the graviton and the dilaton. Its expansion in the string constant α′ (recall we are
interested in the α′ −→ 0 limit) is

SDBI,p = −Tp

∫
Dp

√
−det g e−Φ(X)

(
1 +

1
4
(2πα′)2

(
Tr(F ∧ F) + 2(∂a ϕi)2

)
+O(α′3)

)
dp+1x.

Here, Tp = 2π`
−(p+1)
s is the usual D-brane ‘tension’, g is the pullback of the metric on ten-

dimensional spacetime to the worldvolume of the brane, X is the embedding of the world-
volume (with local coordinates x) into the ambient ten-dimensional spacetime, and Φ is the
dilaton. The ϕ are scalar fields (from the brane perspective) obtained as the first excited states
in the directions orthogonal to the brane. That is, 0 6 a 6 p and p < i 6 9, and ϕi = αi

−1|0; p〉
(the p in the vacuum state being the momentum, of course, unrelated to the other p). Finally,
F is the gauge field strength[1] (curvature) of the first excited states on the brane, with gauge
potential (connection) Aa = αa

−1|0; p〉. The trace is to be read in the vein Remark 3.2.6. The
important thing to remember is that we have gauge fields with strength F along the D-brane.

Now the Chern–Simons term, also known as the Wess–Zumino action, expresses the interac-
tions between the stack of D-branes and the R–R sector. Recall that one writes Cq+1 ∈ Ωq+1(Dp)
for the fermionic differential forms in this sector that can couple to F. The action is

SCS,p = −Tp

∫
Dp

Tr(e2πα′F) ∧
ÿ

q
Cq+1,

where we omit a factor involving the A-hat genera of certain vector bundle connections for
simplicity. The exponent is to be understood via its Taylor series, with wedges instead of
products, and of course only the terms with m factors of F and a Cq+1 such that q + 1 + 2m is

[1]For simplicity, we ignore the correction by the two-form B-field.
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equal to p + 1 can and shall verily contribute to the integral. Setting p = 4, we get

SCS,4 = −T4

∫
D4

Tr(idk)C5 + 2πα′ Tr(F) ∧ C3 +
1
2
(2πα′)2 Tr(F ∧ F) ∧ C1

= −T4

(∫
D4

kC5 + 2πα′ Tr(F) ∧ C3

)
+

T4

2
(2πα′)2 · 8π2 · n

∫
C1,

where n is the instanton number of the gauge field. The last term has been rewritten as the
integral of C1. This can be interpreted (up to a constant) as the worldline traced by an instanton
moving in time. Indeed, the action of the n D0-branes that we had is

SCS,0 = −T0

∫
D0

Tr(idn)C1 = −T0 · n
∫

D0
C1.

The excited states of the gauge theory are bound to the worldvolumes of the D-branes. As
usual for such states, they are BPS; their mass is bounded from below by the volume of X
times the brane tension and stable bound states arise when this minimal value is assumed
(sc. when the action is minimised). The claim then follows because N > 1, in which case the
supersymmetry algebra admits a central extension. For details, the reader may find a consice
explanation in [Moha].

Looking at these actions, we importantly identify the n ‘loose’ D0-branes with SU(k)-Yang–
Mills instantons of charge n living on the k D4-branes’ worldvolume, between which strings
can freely stretch. We have thus established an N = 4 super-Yang–Mills theory whose BPS
states preserve only half the supersymmetry as mentioned prior, thus placing us in the correct
N = 2 setting for the ground states as considered in Chapter 5. The corresponding moduli
spaceMX(n, k) has a Coulomb and a Higgs branch. We work in the latter; this Higgs branch
is essentially the moduli space of instantons for which the scalar fields ϕi living outside the
brane are trivial. The k coincident branes are encoded as k so-called hypermultiplets (elements
of a represention space of the supersymmetry algebra) and the gauge field also yields a
hypermultiplet.[2]

Recall the expected dimension of the moduli space from Equation (3.2.3).

6.2 The Higgs branch on R4

Were X simply R4 (or its compactification S4, forbearing Remark 3.3.8 for a moment), the
analysis would be fairly straightforward given the fruits borne by Chapter 3. We roughly
follow [Witten97].

Under this reduction, op. cit. describes how the k hypermultiplets split into k pairs of so-called
chiral multiplets which combine into a pair of matrices we have called I and J. Similarly, the
adjoint hypermultiplet splits into two (n× n)-matrices we call B1 and B2. (Witten calls these A,
B, U and V, respectively.) The familiar D-terms from supersymmetric gauge theories’ vanishing

[2]Physicists say it ‘is in the adjoint representation of SU(k)’, meaning the curvature is valued in Ad(P), where
P −→ X is an SU(k)-principal bundle as in Lemma 3.1.5.
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is precisely the first ADHM equation µC = [B1, B2] + I J = 0. In matrix coefficients, we have
for all 1 6 i, j 6 n that

[B1, B2]
i
j +

k
ÿ

a=1

Ii
a Ja

j = 0,

where superscripts denote rows and subscripts, columns. Similarly, the F-terms’ being zero
corresponds to the second ADHM equation µR = 0. Following Theorems 4.1.11 and 4.1.12
without the modificiation of Nekrasov et al., the action of GLn(C) on the D-terms allows one
to diagonalise B1 in the generic situation (sc. on a dense open of the representation space of
QADHM). Call its eigenvalues {λ1, . . . , λn}. Restrict to the open set for which all λi are pairwise
distinct, which a moment’s consideration reveals to be dense as well.

For i 6= j, the D-terms’ vanishing says that

(B2)
i
j = −

∑a Ii
a Ja

j

λi − λj
.

For i = j, the commutator does not contribute, so that ∑a Ii
a Ja

j = 0. Mind that I, J are defined
only up to the action of C× as in Remark 4.2.3. Only the diagonal coefficients of B2 are not
fixed, wherefore the independent components of the ADHM datum are{

λi, (B2)
i
i

}n

i=1
∪
{

Ii
a, Ja

i

∣∣∣ ÿ

Ii
a Ja

j = 0 for all i 6= j
}k

a=1
.

For each fixed i, the data of λi, (B2)i
i and the appropriate Ii

a, Ja
i compose a copy of the single-

instanton moduli spaceMX(1, k) by the results of Chapter 4 and Theorem 3.3.6. Moreover,
these data for fixed i are all independent as the eigenvalues of B1 are distinct and we still have
the action of the permutation matrices in GLn(C) that shuffle these eigenvalues. Since this all
holds on a dense open subset of all ADHM systems, we conclude the following.

PROPOSITION 6.2.1. For all n, k ∈ N, the moduli space MX(n, k) is birational to SnMX(1, k),
which in turn is birational to (R4)k.

The latter statement is proved using the ADHM data and the residual C×-action (see the
footnote on p. 22 in loc. cit.).

This is reminescent of prior results. It would appear that for k = 1 we just retrieve the fact
that the Hilbert–Chow morphism is a birational morphism (A2

C)
[n] −→ SnA2

C. The situation is
actually more complicated, as described in Section 3.3 of op. cit. We do not obtain the Hilbert
scheme by blowing up the full singular locus. Rather, Dijkgraaf and the Verlindes proposed
in [DijkVerVerII] that the Higgs branch moduli space for k = 1 be SnA2

C. Witten argues this is
not viable for physical reasons (it would violate the exact SO(4) rotation symmetry markedly
possessed by R4) and instead proposes a variation in which the B-field 2-form that we have so
far been ignoring is relevant. With the notation of Remark 2.1.4, his proposal is

MX(n, 1) = BlSn
(2,1,...,1)A

2
C

(
SnA2

C

)
,

which remains singular if n > 2. The idea is that the exceptional fibre above each point of
Sn
(2,1,...,1)A

2
C is a P1

C which contributes a cocycle to the second cohomology of the underlying
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space. The flux of the B-field should strike this two-sphere with theta angle equalling either 0
or π — other values would not respect the worldsheet’s left-right symmetry. Witten rules out
the latter possibility, leaving θ = 0.

The blown up locus of n-tuples of unordered points such that exactly two of them coincide
and rest are distinct can be seen as an A1 singularity. A priori, the Sn-action, which swaps
the points, is not the usual ADE action, but a linear change of coordinates effects the desired
behaviour. These type-A blowups recur for T4.

∗ ∗∗

We briefly consider the case that X is an abelian surface, which is to say T4. Dijkgraaf and the
Verlindes predicted the following [ibid., §4].

PROPOSITION 6.2.2. For abelian surfaces,MT4(n, k) is a blowup of SnkX.

The specific locus that is blown up is left unspecified. The most probable answer is that one
should consider one of the strata of precisely N coincident points (this N depending on nk)
and view it as an AN singularity.

It is important to remark that the symmetric power involved is given by the product n · k. The
so-called Nahm–Mukai transformation shows that the SU(k)-Yang–Mills theory in topological
sector n on an abelian surface should indeed be symmetric under the exchange of n and k.
With Table 5.1 in mind, this heralds an interesting result for K3 surfaces.

6.3 The Higgs branch on a K3 surface

In the case of R4, the ADHM construction allowed us to identify the instanton moduli space
with a symmetric power of a somewhat easier space, at least on a dense open. Whilst Nakajima
and others have extended the ADHM construction to other varieties (such as ALE spaces),
there is no such relatively straightforward analogue for K3 surfaces. It is therefore all the more
remarkable that Vafa and Witten found what this moduli space should be.

For any K3 surface X, the moduli space is smooth[3] and we have (see [Huybr, Prop. 3.5] for
the signature’s being 19− 3 = 16)

dimMX(n, k) = 4nk− 1
2
(k2 − 1)(24− 16) = 4(nk− k2 + 1).

Interestingly, Vafa and Witten found that for k = 2, there is a resolution

MX(n, 2) −→ S2n−3X.

[3]Assuming that n and k are chosen such that certain stability conditions for sheaves apply; see Chapter 9 for
the precise statement.
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At the very least we may observe that their dimensions certainly agree. By combining our
previous hard work with this result, we can compute the salient partition function (3.2.4) (up
to an overall factor q−s) for the SU(2)-gauge theory on the D-branes’ worldvolume. Recall
from the previous chapter that the target space of such this quantum field theory is precisely
the instanton space above.
THEOREM 6.3.1. Let X be K3 and n, k ∈N. The Vafa–Witten partition function (3.2.4) is given by

Z(τ) =
1
2

(
η(q1/2)−24 + η(−q1/2)−24

)
.

There is moreover an additional term, q.v. Remark 6.3.2.

Proof. Define an := χ(X[n]) for n ∈ N0 and set p = eπiτ, such that p2 = q. It is plain that we
are compelled to work with roots of q by the fact that the instanton number n comes with a
factor two. If we use Göttsche’s formula to rewrite the (left-moving) bosonic partition function
(5.3.1) as

G(p) :=
1
p

ÿ

n>0

an pn =
1
p ∏

m>0
(1− pm)−24 = η(p)−24,

then

Z(τ) =
ÿ

n
χ
(
MX(n, 2)

)
qn =

ÿ

n
χorb(S2n−3X)qn =

ÿ

n
χ(X[2n−3])qn

=
ÿ

n>0

a2n−3 p2n =
ÿ

n>2

a2n−3 p2n =
ÿ

n>0

a2n+1 p2n+4

=
1
2

ÿ

n>0

an
(

pn+3 + (−p)n+3)
=

p3

2

(
∏
m>0

(1− pm)−24 + ∏
m>0

(1− (−p)m)−24

)

=
p4

2
(
G(p) + G(−p)

)
.

The fifth inequality uses the fact that a−3 = a−1 = 0 and the seventh, a standard trick. The p4

is cancelled by taking s = 2. This is what Vafa and Witten found, cf. [VafaWitten, p. 59 ff.]. ���

REMARK 6.3.2. There is also a contribution 1
4 G(q2) that should be added to this expression

to retrieve the exact formula. This is to do with the second Stiefel–Whitney classes (even or
odd) of the principal fibre bundles associated to the Yang–Mills theory, as both possibilities
contribute and we have implicitly been assuming the ‘trivial case’. We do not comment on
these technicalities further and refer to op. cit. for details.

Based on the steps in their computation, Vafa and Witten ‘point out a fairly natural guess’ for
what the partition function should be for higher structure groups SU(k) on a K3 surface (in the
absence of magnetic flux).

This time, let p be a kth root of q and ζ, a primitive kth root of unity. Including the analogue of
the term mentioned in Remark 6.3.2, their suggestion is as follows.
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CONJECTURE 6.3.3 (Vafa & Witten, 1994). For SU(k)-theories, k > 2, on K3 surfaces X, the
partition function is

Z(τ) =
1
k2 G(qk) +

1
k

k−1
ÿ

i=0

G(ζ i p).

Moreover,MX(n, k) −→ Snk−k2+1X is a smooth resolution if gcd(n, k) = 1.

By arguments privately communicated to Vafa and Witten by P. Kronheimer, this is supposed
to hold if n ≡ 1 mod k. One may also find [Dijk1, §7.1] worthwhile, which mentions the
connection between a particular compactification of the moduli space and the Hilbert scheme
in degree nk (cf. Proposition 6.2.2).
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Slytherin’s gigantic stone face was moving. Horrorstruck,
Harry saw his mouth opening, wider and wider, to make
a huge black hole. And something was stirring inside the
statue’s mouth. Something was slithering up from its depths.

— J. K. ROWLING (1965),
Harry Potter and the Chamber of Secrets, Ch. 17: The Heir of Slytherin.

7DEATH TOLLS DO MOUNT WHEN WE DYONS

COUNT

B
LACK holes and their properties have been subject of fascination for decades.[1] In the
early seventies, J. Bekenstein and S. Hawking famously found that the entropy of a
black hole should be proportional to its surface area with proportionality constant 1

4
(as well as a combination of the physical constants c, h̄, kB and GN). This was computed from
the dynamics of the general relativity theory of the black hole — whilst the results behaved
akin to thermodynamics, what was missing for the next twenty or so years was an actual
statistical interpretation of the value for this entropy.

In 1996, Andrew Strominger and Cumrun Vafa found [StromVafa] such an interpretation by
counting states in a D-brane configuration in IIB string theory compactified on K3× S1 (or
equivalently, heterotic string theory on T5). This is precisely what we have been doing. At
large coupling, they found that the branes’ BPS states[2] behaved akin to macroscopic extremal
black holes (in terms of mass, charge and angular momentum).

Irresponsibly summarising their argument in one sentence, Strominger and Vafa used identifi-
cations between charges (in the string theoretic sense), the system of D-branes, and classical
black holes to translate the original problem (counting microscopic states of the black hole)
to something familiar from the previous chapter: counting ground states of the D-branes’
intrinsic quantum (indeed, conformal) field theory. In doing so, they made use of an ‘external
ingredient’, the famous Cardy formula.

We shall briefly take a look at their results and turn our attention to the alternative derivation
[DijkVerVerI] by Dijkgraaf and the two Verlindes, wherein the Cardy formula appears naturally
from the DMVV formula.

[1]This chapter’s bizarrely macabre title conforms to the apparent standard in existing literature on the subject.
[2]Strictly speaking, quarter-BPS states, preserving a quarter of the N = 4 supersymmetry.
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7.1 The Deathly Holes of Chapter seven

Let us again consider a system of k coincident D5- and n instanton string-esque D1-branes in a
IIB theory compactified on a K3 surface times a circle. There are two electric charges QH and
QF in Γ21,5 that a Reissner–Nordström black hole in this theory can carry. The former charge is
effected by a field strength 2-form in the NS–NS sector (a so-called axion) and the latter, an
R–R field strength. The precise definitions can be found in [StromVafa] but are not relevant to
our purposes.

Strominger and Vafa show that an extremal black hole with these charges has an event horizon
whose area is

A = 8π

√
QHQ2

F
2

.

Its Bekenstein–Hawking entropy should then be SBH = A
4 .

On the other side of the coin, the D-brane system’s BPS states (preserving the appropriate
amount of supersymmetry) can similarly carry R–R charge QF. Vafa conjectured that the target
space of the corresponding sigma model theory arising from the D-branes be given by the
symmetric product S

1
2 Q2

F+1K3. The central charge of this theory is then six times the symmetric
power, c = 6( 1

2 Q2
F + 1). (As we saw in Section 5.1, each of the four real dimensions of the

underlying surface adds a boson and a fermion contributing 1 and 1
2 , respectively, to the

total central charge.) Moreover, Strominger and Vafa show that the (left-moving) momentum
operator P (around the S1) is both equal to L0, which counts the degeneracy level N, and, they
argue, to QH.

The Cardy formula in this situation is a statement about the asymptotic behaviour of the
degeneracy of the Nth level of excitation for large N. In the simplest case of a bosonic string
theory with a single family of oscillators, we saw that this degeneracy is nothing but the
number of partitions of N; its generating function is easily computed (which we did in Chapter
5) to be a power of the Dedekind eta function. Withal we do not yet know of any closed
formulæ describing each individual level. The Cardy formula says that the degeneracy of level
N goes as e2π

√
Nc/6 for N � 1.

Hence the Boltzmann entropy of a black hole, Strominger and Vafa conclude, is given in the
large-charge limit by the logarithm of the degeneracy, being

SBoltz = 2π
√

QH(
1
2 Q2

F + 1) .

For large values of the charges, this agrees (at least, to leading order) with

SBH = 2π
√

1
2 QHQ2

F .

7.2 To dyon or not to dyon

In the preceding derivation, the Cardy formula appeared as a deus ex machina to combine the
values of the central charge and degeneracy level into the desired result. This is not the case in
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[DijkVerVerI], which we will now explain to some extent. The precise details are fraught with
physical subtleties that unfortunately fall outside the scope of this work at time of writing.
The interested reader should peruse op. cit. and he may also find Chapter 5 of the book
[BauBruHck] useful.

The subject being studied by Dijkgraaf and the Verlindes is the spectrum of dyons in our
favourite situation; N = 4 supersymmetric string theory compactified in six dimensions. We
may consider either heterotic strings on T6 or IIA strings on K3× T2, as these are dual.

Dyons are particles carrying both electric as well as magnetic charge Q and P, respectively.
Both are elements of the Narain lattice Γ22,6 associated to this string theory and are combined
into one ‘charge vector’ ~Q =

(P
Q
)
. The symmetry group of this theory is SL2(Z)× SO(22, 6; Z).

The factor on the left is the S-duality group acting on ~Q in the obvious manner and the one on
the right is the evident (T-duality) symmetry group of the Narain lattice, acting on the entries
of this vector. In fact, the three quantities[3]

(N, M, L) := ( 1
2 P2, 1

2 Q2, P ·Q) ∈ Γ2,1

are SO(22, 6; Z)-invariant integers. They are very much related to the three quantum numbers
(n, m, `) appearing in the DMVV formula. For instance, Q2/2 and P2/2 are the familiar product
of the quantised momentum and winding number of the dyon.

∗ ∗∗

What does this concretely have to do with the DMVV formula? Recall Remark 5.4.3 where
Φ = Φ10 was defined as the ‘completion’ of this formula making it symmetric in what we now
tentatively identify as electric and magnetic charges. It is a cuspidal Siegel modular form. The
definition of these is the same as that of ordinary modular (cusp) forms, except that instead of
SL2(Z) acting on H, one takes the symplectic group

Sp(4; Z) =

{
X =

(
A B
C D

)
∈ Mat4×4(Z)

∣∣∣∣∣ X> JX = J

}
,

where

J =

(
0 id2

− id2 0

)
,

acting on the Siegel upper halfspace of genus two

H2 :=

{
Ω =

(
z u
u w

)
∈ Mat2×2(C)

∣∣∣∣∣ im(z), im(w), det im(Ω) > 0

}

in the obvious manner by X ·Ω := (AΩ + B)(CΩ + D)−1.

[3]All products are to be read in the signature of the corresponding Narain lattice.
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DEFINITION 7.2.1. A Siegel modular form of weight k ∈ Z is a holomorphic function
ϕ : H2 −→ C such that for all X ∈ Sp(4; Z) and Ω ∈ H2,

ϕ(X ·Ω) = det(CΩ + D)k · ϕ(Ω).

Cuspidality is defined by the vanishing of a particular Fourier coefficient, as with modular
forms. The Igusa form Φ from the DMVV formula is the unique Siegel cusp form of weight 10.
One can embed the S-duality group SL2(Z) into Sp(4; Z) as a subgroup leaving Φ invariant.

The connection with quarter-BPS dyons is that their (left-moving) partition function — unsur-
prisingly an elliptic genus in this number of compactified dimensions — is actually the inverse
of the Igusa form. Concretely, let us (re)write the variables in the DMVV formula as[4]

p = e2πiρ, q = e2πiτ and y = e2πiz,

and combine them into a matrix Ω := (ρ z
z τ) ∈ H2. We can then write

Φ(Ω) = e2πi(ρ+τ+z) ∏
n,m,`

(
1− e2πi(nρ+mτ+`z)

)c(4nm−`2)
, (7.2.1)

whereby it can be shown that the coefficients c(nm, `) from the DMVV formula can indeed
be written in the given form for Φ. The product runs over n, m > 0 and ` ∈ Z with the
requirement that ` < 0 if n = 0 = m. The extra prefactor compared to the expression in Remark
5.4.3 is a shift in the zero point of counting added for the function to satisfy the transformation
property of a Siegel modular form.

There is a double zero of this function in y = 1. Indeed, if n = 0 = m and z = 0, the
expression vanishes with order ∑`<0 c(−`2) = 2. (To see why only c(−1) = 2 contributes,
whilst c(−x) = 0 for x < −1, see the appendix of [DijkVerVerI].) Therefore, the dyonic partition
function Z(Ω) = Φ(Ω)−1 has a double pole, called the tachyon pole, at z = 0. By our earlier
remark, there must be other poles as well, obtained by Sp(4; Z)-transformations.

In fact, the asymptotic behaviour is

Φ(Ω)
z→0−−→ 1

z2 · η(ρ)24η(τ)24 .

The connection to (bosonic) partition functions in this limit is markèd. Moreover, one can
say something about the dyonic black hole behaviour. Recall that the single bosonic partition
function could be defined on a torus, or genus-one curve, as seen in Section 5.1. This Igusa
form is a partition sum on a genus-two Riemann surface. Its two handles each carry one out
the two quantum numbers corresponding to magnetic and electric charge (i.e., quantised
momenta) whereas the remaining quantum number we had represents the ‘bridge’ between
the two handles. This can be intepreted as two black holes, one charged electrically and the
other, magnetically, orbiting one another in a bound state with angular momentum quantised
by L. In the limit above, the ‘bridge is pinched shut’, effecting two separate black holes.

[4]One also commonly sees σ instead of ρ or τ, and ν, υ or v instead of z.
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Notice that the quantity 4nm− `2 appearing in (5.4.3) is the norm squared of (
√

2nm ,
√

2nm , `)
in Γ2,1. Similarly recall that the charges P, Q squared equalled 2nm (the reader is reminded that
the quantum numbers n and m in the DMVV formula were to be interpreted as the momentum
and winding number, respectively). It is plain that (n, m, `) and (N, M, L) are somehow related.
To see how, write the Fourier series of the inverse Igusa form as

1
Φ(Ω)

=
ÿ

n,m,`∈Z

D(n, m, `)e−2πi(nρ+mτ+`z).

The coefficients D(N, M, L) are obtained as the degeneracies d(P, Q) of the dyons with charge
~Q. Given the charges, these degeneracies are distilled from the dyonic partition function in the
usual fashion via the contour integral

d(P, Q) =
∮ eπi · ~Q>Ω ~Q

Φ(Ω)
dΩ =

∮ e2πi(Nρ+Mτ+Lz)

Φ(ρ, τ, z)
dρdτdz = D(N, M, L).

This Fourier coefficient can be computed using the partition function’s tachyon pole (see
aforementioned appendix), and one retrieves the familiar Cardy formula

log D(N, M, L) ∼ π
√
(4NM− L2) = π

√
P2Q2 − (P ·Q)2 .

Notice that the Cardy formula was invoked naturally to compute (asymptotically) the Fourier
coefficients of the dyons’ partition function, as opposed to Strominger and Vafa’s derivation.
The above result agrees precisely with the statistical entropy of four-dimensional dyonic black
holes found in e.g. [CvetTsey].

∗ ∗∗

We thus conclude — albeit having skipped the computations proper — that the DMVV formula
is a very powerful and versatile result. This completes our treatment of Hilbert schemes in
physics. The next chapter does, however, carry a distinct physical flavour in terms of Hilbert
spaces and their Fock representations and one should keep this, as well as the rôle of Göttsche’s
formula, in mind.
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Cwico wæs þa gena,
wis ond gewittig; worn eall gespræc
gomol on gehðo ond eowic gretan het,
bæd þæt ge geworhton æfter wines dædum
in bælstede beorh þone hean,
micelne ond mærne, swa he manna wæs
wigend weorðfullost wide geond eorðan,
þenden he burhwelan brucan moste.

— BEOWULF,
composed ca. 700–ca. 1025, ll. 3093–100.

8A GERMAN, A JAPANESE AND A NORWEGIAN

WALK INTO A BAR

L
IE algebras, in a manner not dissimilar to that of Hilbert schemes, are possessed of a
particular propensity for presenting themselves in unexpected areas. Owing to the
work [Nakaj97] of Nakajima, Göttsche’s eponymous formula (Theorem 5.3.1 q.v.) can

be used to relate the representation theory of a certain infinite-dimensional Lie algebra to the
combined cohomology of all Hilbert schemes of a smooth surface. A precise statement will
be given later; accurately writing down Nakajima’s Theorem requires spending some time
introducing all the players involved.

We commence in full generality afore specifying to the relevant situation at the end of the first
section. The second section is devoted to the theorem proper and (aspects of) its proof. The
lecture notes [Lehn, §4] have been most helpful throughout. Appendix A.4.5 may be useful for
this chapter, as well as A.1.2 and A.4.1 in particular for its latter half.

Throughout this chapter, we fix the ground field k = C for geometric objects. Let X be a smooth
projective surface. Recall that X[n] is also smooth and projective of dimension 2n and can be
analytified to a compact complex manifold of that dimension. Therefore its underlying smooth
(sc. real) manifold has dimension 4n. As prior, let bi denote the ith Betti number of a manifold,
for i ∈ Z.

8.1 The bartender says, ‘I apologise, we are nearing closure.’

If V = V0 ⊕ V1 is a super vector space over Q, we call a bilinear form 〈−,−〉 : V × V −→ Q

even if the odd and even sectors are orthogonal with respect to it: 〈V0, V1〉 = 0 = 〈V1, V0〉.

Let H be a finite-dimensional Q-super vector space equipped with a nondegenerate, even,
graded symmetric bilinear form 〈−,−〉. Recall graded symmetry means that for homogeneous
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elements α, β ∈ H of degrees a, b ∈ {0, 1}, respectively, we require[1]

〈α, β〉 = (−1)ab〈β, α〉.

The example to keep in mind throughout is the following.
EXAMPLE 8.1.1. Let X be a smooth, complex projective surface and consider its cohomology
ring H = H•+2(X) with the obvious Z/2Z-grading. Define a bracket

〈−,−〉 : H × H −→ Q : (α, β) 7−→ −
∫

X
α ^ β,

where the integral is understood to be over the underlying compact smooth manifold. Both
the minus sign and the index shift in the cohomology are present for æsthetic reasons. After
identifying singular with de Rham cohomology, the cup product simply becomes the wedge
product of differential forms. The desired properties of the bracket then follow immediately
from those of integrals over manifolds. In particular, it is even because no two differential
forms of opposite parity yield a form of degree dim X = 4 under the wedge product.

We associate to such a pair (H, 〈−,−〉) an infinite-dimensional Lie superalgebra, obtained by
taking the Laurent polynomials over H followed by a trivial central extension.

DEFINITION 8.1.2. Let (H, 〈−,−〉) be as above. Define the Heisenberg algebra associated to
this pair as the Q-Lie superalgebra

h := H[t, t−1]⊕Qc,

whose Z/2Z-grading is inherited from H and where c is defined to be even. The bracket is
given on a spanning set as follows: declare c ∈ z(h) and for α, β ∈ H and f , g ∈ Q[t, t−1], set

[α f , βg] := 〈α, β〉 res( f ′g)c.

Here, f ′ is the derivative of f and the residue of a Laurent polynomial is the coefficient of t−1.

The reader may verify that this satisfies the requirements of Definition A.4.4. In particular,
super skew-symmetry of the bracket follows from graded symmetry of 〈−,−〉 and the Leibniz
rule, coupled with the obvious fact that for any p ∈ Q[t, t−1], one has res(p′) = 0.

In the context of physics, saying Heisenberg algebra generally means saying Fock space. Indeed,
we shall highlight the physical analogy with a harmonic oscillator in the constructions to follow.
Nakajima’s Theorem will more or less amount to the statement that the joint cohomology of all
Hilbert schemes of a smooth, complex projective surface carries a Fock space representation.

Having defined the Lie algebra h, we now treat the following example, which, whilst easy by
itself, is crucial to Nakajima’s result. It is known as the little Heisenberg algebra.

EXAMPLE 8.1.3. Let g0 be the Lie subalgebra of gl3(Q) spanned by the three elementary
matrices p = E12, q = E23 and c = E13. The reader easily checks that the Lie bracket is given
by [p, q] = c, with c being central. Define an (infinite-dimensional) representation on the

[1]In this case of course the result is zero if a 6= b by evenness.
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symmetric algebra S Q = Q[z] =: M0 by

ϕ0 : g0 −→ gl(M0) :


p 7−→ ∂

∂z ,

q 7−→ z · ,

c 7−→ idV .

One readily verifies this to be a representation by virtue of the Leibniz rule for the action
of p. It is moreover irreducible: given a nontrivial g0-submodule of M0, take a polynomial
a0 + . . . + anzn in it. Then applying ϕ0(p) to it n times and normalising by n!an yields 1. Then,
by repeated application of ϕ0(q) and taking linear combinations, we see that the submodule
contains all polynomials and is hence equal to M0. The Poincaré series of M0 with respect to
its usual grading (M0)n = Qzn is

∞
ÿ

n=0

dimQ((M0)n)tn =
∞
ÿ

n=0

tn =
1

1− t
.

We can view g0 as a Lie superalgebra with all elements in even degree. We could also have
made p, q odd while keeping c even and adjusting the bracket accordingly.

EXAMPLE 8.1.4. Let g1 = Q{p, q} ⊕Qc be the Lie superalgebra with the same underlying
vector space as g0 and Lie superbracket [p, q] = pq + qp = c and [p, p] = [q, q] = 0, with c
still central. This Lie bracket respects the grading. Define a representation ϕ1 on the exterior
algebra

∧
Q = Q[ε] =: M1 by the same formulæ as in the previous example. It is irreducible

for the same reason and its Poincaré series is ∑∞
n=0 dimQ((M1)n)tn = 1 + t.

Returning to the ‘big’ Heisenberg algebra h, we proceed thus: for n ∈ Z and α ∈ H, define
αn := αtn ∈ h. One easily sees that the Lie bracket on such elements for α, β ∈ H is

[αn, βm] = nδn,−m 〈α, β〉 c. (8.1.1)

Write d = dimQ H and choose a basis {α1, . . . , αd} of H comprising homogeneous elements.
Write {β1, . . . , βd} for its dual basis with respect to 〈−,−〉, viz.〈

αi, βj
〉
= δij.

Notice that each βi must be homogeneous of the same degree as αi by evenness of the form
〈−,−〉 and this expression is graded symmetric in i and j. Moreover, the set{

αi
n

∣∣∣ n ∈ Z and 0 6 i 6 d
}
∪ {c} (8.1.2)

is evidently a Q-basis for h. Alternatively, for any fixed n, a moment’s thought affirms we
could replace all αi

n with the corresponding βi
n. We have the following observation.

LEMMA 8.1.5. Let n ∈ Z and 1 6 i 6 d. Then the triple
{

αi
n, βi
−n, c

}
spans a Lie subsuperalgebra

that is isomorphic to either g0 from Example 8.1.3 (if αi is even), or g1 from Example 8.1.4 (if αi is odd).

Beweis. Klar. ���
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These triples will become important when comparing the Poincaré series of the vector spaces
underlying two isomorphic representations of h that we now introduce.

Write Uh for the universal enveloping algebra of h, with unit element 1. We start by constructing
a representation of the Heisenberg algebra on a quotient of Uh, essentially by enforcing that
the αn in nonnegative degree act as annihilation operators on a ‘vacuum’, whereas those in
negative degree become creation operators.[2] Concretely, define the left ideal

I := (αn | α ∈ H, n > 0) + (c− 1)

and write V := Uh/I for the quotient. We define a representation h −→ gl(V) by letting each
element act by left multiplication with itself, which is obviously well defined. It is immediate
that 1 := c + I = 1 + I is a highest weight vector[3] for this representation, which is therefore
called the vacuum element, and moreover that c ∈ h acts as the identity, whilst all αn for n > 0
act as zero. Introduce h− := t−1H[t−1]; the polynomials in t−1 over H without constant term.
It can be seen as an abelian Lie subsuperalgebra of h since all residues in the definition of the
latter’s Lie bracket will vanish. There is an isomorphism of graded vector spaces

V ∼= Uh− ∼= Sh−,

where the first isomorphism is obvious and the second follows from Poincaré–Birkhoff–Witt.
As such, using the basis (8.1.2) for h and restricting it to h−, we may view V as the vector space

V ∼= Q
[
αi
−n

∣∣∣ n ∈N and 0 6 i 6 d
]

(8.1.3)

of polynomials in the (noncommuting) variables αi
−n. Henceforth replace the basis elements

αi
m for m > 0 by their duals βi

m, as we announced we may do. Note that for m = 0 both the αi
0

and the βi
0 act by zero on V.

LEMMA 8.1.6. Under the isomorphism (8.1.3), the representation of h is given on the (modified) basis
(8.1.2) as follows. The central element c acts as idV and for all n ∈N0 and 1 6 i 6 d, the αi

−n act by
left multiplication with themselves, whereas the βi

n, by (−1)|β
i |+1n ∂

∂αi
−n

.

Proof. The only action not immediate from (8.1.3) is that of the βi
n. Let n be nonnegative and m,

strictly positive. We verify how βi
n acts on a linear monomial α

j
−m, where we take βi and αj in

degrees b and a, respectively. Acting on the unit of the universal enveloping algebra,

βi
nα

j
−m1 = (βi

nα
j
−m − (−1)abα

j
−mβi

n)1

= adβi
n
(α

j
−m)1

= −(−1)ab ad
α

j
−m
(βi

n)1

= −(−1)abnδ−m,−n

〈
αj, βi

〉
idV 1

= (−1)b2+1nδnmδji1

= (−1)b+1n
∂α

j
−m

∂αi
−n

1.

[2]The similarity with string theory, in which the bosonic creation operators are also usually written αi
−n for

2 6 i 6 25 and n ∈N, is somewhat hapful.
[3]In this scenario, ‘lowest weight’ might be more appropriate.
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The sign is correct; recall that i = j implies that a = b for βj to be dual to αi under 〈−,−〉. Then
necessarily ab = b2 = b and if i 6= j the expression is zero anyway. ���

As such, V is an irreducible h-module, which fact is proved in complete analogy with Example
8.1.3. It is called the Fock space representation.

Apart from its Z/2Z-grading inherited from H, the Heisenberg algebra also has a Z-grading,
called the weight, defined to be −n for αn, for all n ∈ Z, and 0 for c. With this assignment, the
Lie bracket respects the weight: looking at equation (8.1.1), if n 6= −m the bracket vanishes
and so in particular lands in the component of weight n + m. If n = −m, the bracket is a scalar
multiple of c, which indeed has weight n + m = 0. Moreover, the ideal I is homogeneous
by definition. It follows that V inherits the grading by weight. This makes V a bigraded h-
module, under the assumption that the Z/2Z-grading of H resulted from a Z-grading that
we henceforth make. In the pertinent case of Example 8.1.1, this is indeed so.

Before proceeding, we need one technical lemma.

LEMMA 8.1.7. Let (Vi)i be a collection of Q-vector spaces. Then

S
(⊕

Vi

)
=
⊗

SVi and
∧(⊕

Vi

)
=
⊗∧

Vi

naturally in the Vi.

Proof. Consider S : ModQ −→ GrComAlgQ as functor mapping a Q-vector space to its sym-
metric algebra. It has a right adjoint given by the forgetful functor mapping a graded commu-
tative Q-algebra to its degree-one component, as the reader may check. Therefore S commutes
with colimits.

A similar argument holds for the exterior algebra functor
∧

: ModQ −→ GrAltAlgQ where an
alternating algebra is defined by its multiplication’s obeying graded commutativity. ���

REMARK 8.1.8. If W = W0 ⊕W1 is a super vector space, then actually

SW = SW0 ⊗
∧
(ΠW1),

where Π is the parity flip operator. This is to ensure that on the corresponding alternating ring,
multiplication is a ring homomorphism rather than an antihomomorphism. This caveat does
not affect the linear structure of the space, but should withal be kept in mind.

We now compute the Poincaré series of V. Write H = H0 ⊕ H1 and

h− =
⊕
m>0

Hqm =
⊕
m>0

H0qm ⊕ H1qm

for the weight decomposition, where q is a formal variable corresponding to t−1. Next, consider
the Z-grading on V by weight:

V =
⊕
n>0

Vnqn ∼= Sh− =
⊕
m>0

S(H0qm)⊗
⊗
m>0

∧
(ΠH1qm).
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Remark that the even part of h contains all triples
{

αi
m, βi

−m, c
}

(where 0 6 i 6 d) such that
|αi| = 0 and their union forms a basis. Recalling the result of Lemma 8.1.5 and observing that
there are exactly dim H0 indices i such that |αi| = 0, it follows that

S(H0qm) ∼= (M0qm)⊗dim H0 ,

with M0 as in Example 8.1.3. Taking Poincaré series, we find

dim S(H0qm) =

(
1

1− qm

)dim H0

.

Note that c ∈ ΠH1qm by virtue of the parity change. Therefore we obtain the analogous result∧
(ΠH1qm) ∼= (M1qm)⊗dim H1

for the odd component. The Poincaré series is (1 + qm)dim H1 . Combining these results, we find

dim(V) =
ÿ

n>0

dim(Vn)qn = ∏
m>0

(1 + qm)dim H1

(1− qm)dim H0
.

We assumed that H also has a Z-grading H =
⊕

i∈Z Hi with only finitely many nonzero sum-
mands that is moreover compatible with the Z/2Z-grading. As mentioned, V then becomes
bigraded, say V =

⊕
n,i Vi

n. Introducing a new formal variable p, the symmetric algebra now
splits over the direct sum as⊕

n>0

⊕
i

Vi
nqn pi =

⊗
m>0

⊗
j

S(H0qm pj)⊗
⊗
m>0

⊗
j

∧
(ΠH1qm pj).

Taking Poincaré series on both sides and noting that H0 (respectively, H1) is the direct sum of
Hj for j even (respectively, odd), we finally obtain

ÿ

n>0, i

dim(Vi
n)q

n pi = ∏
m>0

(
∏

j even

1
(1− qm pj)dim Hj

· ∏
j odd

(1 + qm pj)dim Hj

)
= ∏

m>0
∏
j∈Z

(1− (−1)jqm pj)−(−1)j dim Hj .

The right-hand side precisely coincides with that of Göttsche’s formula provided that we take
for H the cohomology ring of our surface with index shift as in Example 8.1.1, up to another
shift of indices of j by 2m, for each m. We now specialise to this case.

Henceforth fix H = H•+2(X). This cohomology is possibly nontrivial only in degrees −2, . . . , 2.
The index shift centres these modules symmetrically around degree zero. We do the same for
the Hilbert schemes of the surface X and sum them all. Define

H :=
⊕
n>0

H•+2n(X[n]) =:
⊕
n>0

Hn.

EachHn is itself a graded Q-vector space with trivial components outside the range of degrees
−2n, . . . , 2n. We therefore write

H =
⊕
n>0

2n⊕
i=−2n

Hi
n, where Hi

n = Hi+2n(X[n]).

98



By the previous derivation and Göttsche’s formula, we find thatH ∼= V as graded Q-modules.
Nakajima, in his own words, ‘[Threw] a bridge between two seemingly unrelated subjects,’
by proving the much stronger result that H also carries a representation of h that is naturally
isomorphic to the Fock space V.[4] He says the relation between the right-hand side of Göttsche
— which yields modular forms in certain cases, as we have seen — and this Fock space on
the cohomologyH should be seen as a geometric realisation of Vafa and Witten’s modularity
conjectures.

8.2 Nakajima replies, ’Such is the purpose of bars.’

The representation on H shall be constructed as follows. We define the so-called Nakajima
operators on H that exhibit properties of ladder operators familiar from quantum physics.
Morally speaking, the creation operator of index n shall ‘add an n-fold point’ to a configuration
and as such be an operator of degree n between the cohomologies of the Hilbert schemes of X.
Similarly, the annihilation operator removes such a point. This is formalised as follows.

Let `, n ∈N0 and consider the fibred product X[`+n] × X× X[`]. Define the incidence scheme

Z`,n+` :=
{
(ξ ′, x, ξ) ∈ X[`+n] × X× X[`]

∣∣∣∣ ξ ⊂ ξ ′ and ρ(ξ ′) = ρ(ξ) + n[x]
}

,

where ρ is the Hilbert–Chow morphism and we recall n[x] is cycle notation for the closed
subscheme of length n supported at {x}. On the nose, this definition, in spite of being standard
in the literature, makes no sense even as a set. The proper explanation is the analogue of
Equation (2.1.1). Define a subfunctor Z `,n+` of Hilb`+n

X ×Hilb1
X ×Hilb`X sending a k-scheme S

to the set

Z `,n+`(S) =
{
(ξ ′, x, ξ) ∈ X[`+n](S)× X(S)× X[`](S)

∣∣∣∣ ξ ⊂ ξ ′ and ρ∗(ξ
′) = ρ∗(ξ) + nx

}
.

(Of course, ρ∗ is the map X[−](S) −→ S−X(S) and we still use cycle notation in the codomain.)
One can show that Z `,n+` is a closed subfunctor (in fact, a closed immersion of contravariant
functors of schemes) and hence representable by a scheme we call Z = Z`,n+`.

A fairly straightforward argument using a stratification (cf. Remark 2.1.4) of Z and Briançon
schemes, which we omit as a result of our not having treated this theory (it can be found in
[Lehn, p. 18]), shows that the cycle class of Z defines an element

[Z] ∈ CH2`+n+1(X[`+n] × X× X[`]).

For i = 1, 2, 3, write pi for the projection from X[`+n] × X × X[`] onto its ith factor. Recall the
cycle map cl from the Chow group to the homology in double degree. We equip eachH` with
an even, nondegenerate, graded symmetric bracket

〈−,−〉 : H` ×H` −→ C : (α, β) 7−→ (−1)`
∫

X[`]
α ^ β,

[4]Actually, Ian Grojnowski had already proved something similar in 1996. Additionally, one unknown constant
in Nakajima’s proof was computed in 1998 by Ellingsrud and Strømme (see [Nakaj97, Remark 3.6]).
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where the integral is understood to be over the underlying compact manifold. This agrees with
the definition on H = H1 from Example 8.1.1.

We are now ready to define Nakajima’s operators. Their notation is somewhat abusive, clashing
with the α−n ∈ V from prior; we permit this on the grounds that the two will correspond to
one another under the announced isomorphism.
DEFINITION 8.2.1. Let n, ` ∈N0 and α ∈ H be a cohomology class. We define the Nakajima
operator of degree n associated to α as follows:

α−n : H` −→ H`+n : y 7−→ PD−1[p1,∗
(
(p∗2(α) ^ p∗3(y)) _ cl[Z]

)]
.

Similarly, α+n : H`+n −→ H` can be defined by reading the formula the other way round, or
alternatively as the adjoint of α−n with respect to 〈−,−〉.

We reiterate α−n and αn should be thought of as creation and annihilation operators, respec-
tively. As one should expect, it is easily verified that α0 = idH`

for all ` and α. Moreover,
patiently unravelling the definitions yields the following result.

LEMMA 8.2.2. The operators αn are homogeneous in the following sense. If y ∈ Hp
` and α ∈ Hq are

homogeneous elements (for any p, q ∈ Z), then α−n(y) ∈ Hp+q
`+n .

Beweis. Klar. ���

The Nakajima operators are therefore well behaved. The most important result, originally
published in [Nakaj97], is of course that their Lie superbracket in gl(H) agrees with that of h.
THEOREM 8.2.3 (Nakajima, 1997). Let α, β ∈ H and n, m ∈ Z. The graded commutator of the
associated Nakajima operators satisfies

[αn, βm] = nδn,−m 〈α, β〉 idH .

Note α and β are independent elements of H and not each other’s dual with respect to 〈−,−〉.

COROLLARY 8.2.4. Define a representation of h onH by letting αn ∈ h act as the Nakajima operator
αn for all n ∈ Z and c, by the identity. ThenH ∼= V as representations.

Proof. We identify the vacuum element 1 ∈ V with the ^-unit element 1 ∈ H0 = H0(X[0]).
This generates the representationH and is obviously annihilated by αn for all n > 0.

By Nakajima’s Theorem, the map V −→ H : 1 7−→ 1 is an intertwiner of graded represen-
tations and moreover injective by irreducibility of V. By the previous section’s result, it is
therefore an isomorphism. ���

REMARK 8.2.5. This isomorphism allows one to give a basis of the cohomology of all Hilbert
schemes of X with a distinct geometric origin, comprising all finite products of αi

−n acting on
the vacuum 1, with n > 0 and i in the appropriate range. The analogy with the space of string
states could scarcely be plainer.
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∗ ∗∗

We sketch but a crude idea of the proof of Nakajima’s Theorem, focussing on the case of
interest, which is m = −n. If m 6= −n, the bracket should vanish, which it does essentially by
dimension arguments. (Unfortunately, the full proof falls outside the scope of this thesis, for
we have not defined all tools necessary; it can be found in [Lehn, §4.4].)

The composition αnβ−n should be thought of as an operator adding an n-fold point to a given
configuration, and then removing a (possibly different) n-fold point. The reverse combination
is plainly more delicate; in order to subtract an n-fold point, one should exist somewhere in the
first place. We therefore expect a slight asymmetry in the argument (it will appear at the end).

The following procedure mimics the definition of the Nakajima operators themselves and
should therefore not flummox the reader. Let

Y± := X[`] × X× X[`±n] × X× X[`]

and define projections p123 onto the first three factors, p345 onto the last three and so on. Because
each factor is projective and flat over C, we know that each such projection is both proper and
flat as morphism of schemes and hence induces pushforwards and pullbacks on the Chow
groups. On p123(Y±) we can define a Chow group class [Z±] = [Z`,`±n] as before. Tacitly
swapping the third and fifth factors, we may also view this class as an element of the Chow
group of p345(Y±). Let Y′ := p1245(Y±). The reader is invited to verify that the expression

ω± := p1245,∗
(

p∗123[Z
±] · p∗345[Z

±]
)

defines a Chow class ω± ∈ CH2`+2(Y′), the dot denoting intersection product. Write p′i for
the projection from Y′ onto its ith factor, where i = 1, . . . , 4. It is then easy to check that
αnβ−n ∈ gl(H) is an operator mapping an element y ∈ H` to

(−1)n PD−1[p′1,∗
(
(p′∗2 (α) ^ p′∗3 (β) ^ p′∗4 (y)) _ cl(ω+)

)]
.

As before, it can be verified that if y, α and β are homogeneous of degrees p, q and r, respectively,
then αnβ−n(y) ∈ Hp+q+r

` .

Similarly, β−nαn is given by the same expression with ω− instead of ω+. The idea of the proof
is to compute the difference ω+ −ω− in the appropriate Chow group. This is done by noticing
that ω+ is supported on the subscheme

W+ = p1245

(
p−1

123(Z+) ∩ p−1
345(Z+)

)
=

{
(ξ, x, y, υ) ∈ Y′

∣∣∣∣ ∃ψ ∈ X[`+n] s.t. ξ, υ ⊂ ψ and ρ(ξ) + n[x] = ρ(ψ) = ρ(υ) + n[y]
}

,

with the definition being understood in the same vein as that of Z at the beginning of this
section. The second line comprises all those data of two length-` subschemes ξ, υ and two
points x, y such that there exists a length-(`+ n) subscheme ψ obtained both by adding x to ξ
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with multiplicity n and similarly adding y to υ. In the same vein, ω− is supported on

W− = p1245

(
p−1

123(Z−) ∩ p−1
345(Z−)

)
=

{
(ξ, x, y, υ) ∈ Y′

∣∣∣∣ ∃ψ ∈ X[`−n] s.t. ξ, υ ⊃ ψ and ρ(ξ)− n[x] = ρ(ψ) = ρ(υ)− n[y]
}

,

where now there exists a length-(`− n) subscheme such that adding the n-fold point x to it
yields ξ and adding y, υ.

The proof of the Nakajima relation proceeds roughly as follows. One must identify the irre-
ducible components of W± of maximal dimension (sc. 2`+ 2, the degree of ω±): whilst W+ has
two such components, W− only has one. (This reflects the moral ‘delicacy’ of β−nαn compared
to αnβ−n mentioned earlier.) In fact, they share one component U, which is defined using
Briançon schemes, and the other component of W+ is the diagonal ∆W = {(ξ, x, x, ξ) ∈W+}.

Inside CH2`+2(Y′), Nakajima concludes the identities ω+ = a[U] + N[∆W ] and ω− = b[U]

for some coefficients a, b, N ∈ Z. By localisation at the generic points of the two irreducible
components, one can show a = 1 = b, wherefore

ω+ −ω− = N[∆W ].

This already shows that Nakajima’s Theorem has the correct operator on the right-hand side;
after all, a form supported on ∆W amounts to no more than removing a (pre-existing) n-fold
point and replacing it exactly where it had been. It remains to compute the coefficient N.
In his original publication, Nakajima did not know how (though he did know the first few
values for small n). The computation was done by Ellingsrud and Strømme, who showed it
to be an intersection product of certain Briançon varieties (see Theorem 4.6 in loc. cit.) equal
to (−1)n−1n, as desired. Nakajima did later vindicate his honour, computing the coefficient
correctly using an altogether different method in [Nakaj99, Theorem 9.20].

More important for us, perhaps, than the details of the proof is the geometric interpretation of
the fact that the joint cohomology of the Hilbert schemes of a surface carries such a Fock space
representation. This physical point of view is most salient.
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Now, this is not the end. It is not even the beginning of the
end. But it is, perhaps, the end of the beginning.

— SIR WINSTON CHURCHILL (1874–1965),
reply to General Alexander following 1942 victory in Egypt.

9THE MATHEMATICS OF VAFA AND WITTEN:
SCRATCHING THE SURFACE

I
T will by now have been inculcated that a rigorous translation into mathematics of
Vafa and Witten’s conjectures in [VafaWitten] is yet an uncut gemstone. They found
striking results for SU(2) gauge theories, but the proper method of articulating them

mathematically, let alone the desired generalisation to SU(k) for higher values of k, were for a
long time but a distant speck on the horizon. Only recently have mathematicians been making
inroads into this mysterious bog and not without success.

The correct way of phrasing this ‘hard matere’ (as the eagle of Jove would put it) turns out
to be via moduli spaces of sheaves satisfying certain stability conditions. We already encountered
something similar in Chapter 4: in the abelian case (sc. k = 1), the representations of the ADHM
quiver satisfying a stability condition and the first ADHM equation were described by (A2

C)
[n].

For k = 2, the situation became considerably more difficult when the Hilbert scheme of the
affine plane yielded to a space of torsion-free sheaves on the projective plane with additional
requirements, q.v. Theorem 4.2.8. It is this flavour of moduli spaces of sheaves on surfaces
that we study in this final chapter in addition to trying to establish their relation to the Hilbert
schemes of these surfaces. We will do this by first defining what (semi)stable sheaves and their
moduli spaces are, before giving a global overview of the article [TanaThom] that describes
the mathematical interpretation of Vafa and Witten’s work. We conclude by presenting some
recent results in this field.

Needless to say, the content of this chapter is rather more advanced than is that of the previous
ones. The developments herein described feature techniques in virtual geometry, deformation
theory and derived geometry that fall well outside the scope of this thesis. Wherever these
concepts appear we shall unfortunately have to make rather imprecise statements. We therefore
restrict ourselves to giving rough sketches of the work that has been done, dealing mainly
in examples rather than proofs, for our aim is to convey an intuitive idea of the theory. Our
running example is P1, which is a few leaves short of a tree, not being a surface — however, it
lends itself amenably to accessible examples that are markedly not ‘encombrous for to here.’
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9.1 Laying the table: stable sheaves and their moduli spaces

Let us proceed with the basic definitions of stability for sheaves, following [HuybLehn]. At
first glance, they may appear rather out of the blue. The reasoning behind them is as follows: as
already announced, we wish to define a moduli space of sheaves on a surface that is geometri-
cally well behaved. Akin to Hilbert schemes, as defined in Chapter 2, this moduli space should
be the scheme representing some functor parametrising these sheaves, up to isomorphism.
In general, however, such a manner of functor has little hope of being representable by a
respectable space. The problem is that conditions such as ‘up to isomorphism/equivalence’
generally involve a group acting on the set of all sheaves, in which individual sheaves’ stabilis-
ers need not be trivial. In fact, they can be quite large. In the quotient, this leads to singularities
and other pathologies that are most undesirable. The notion of stability turns out to be suffi-
ciently stringent for the geometry to remain under control, yet not so restrictive that the moduli
spaces become useless.

Throughout, fix a projective scheme X of finite type over a field k (wherefore X is Noetherian).
Unless otherwise stated, all sheaves E on X are assumed to be coherent.

Recall that the support of a sheaf E is the closed subset of points x ∈ X such that the stalk
Ex 6= 0. It can be endowed with a subscheme structure. The dimension of a sheaf is then defined
to be that of its support. We say E is of pure dimension d if all nontrivial coherent subsheaves
F ⊆ E (in particular, E itself) satisfy

dimF = d.

The following definition is conceptually no different from Definition 2.2.1. Fix a very ample
divisor H on X (roughly speaking, this is called a polarisation of X) and write O(m) = O(mH)

for m ∈ Z as usual. The Hilbert polynomial of E is defined on integers by

PE (m) := χ(E ⊗O(m)) ∈ Q[m]

and we suppress the dependence on the choice of H. Suppose dim E = d and E 6= 0; then
deg PE = d and the polynomial can be uniquely written as

PE (m) =
d

ÿ

i=0

αi(E)
i!

mi

for certain αi(E) ∈ Q, with αd(E) > 0 the multiplicity of E . Note that in particular we have
dimOX = dim X and αdim X(OX) is the degree of X with respect to H. (This is made explicit
for surfaces in [Harts, Exc. V.1.2].) We define two notions that will recur throughout.
DEFINITION 9.1.1. Let E be a coherent sheaf on X of dimension d = dim X. Then

(i) the rank of E is

rk(E) = αd(E)
αd(OX)

;

(ii) the degree of E is
deg(E) = αd−1(E)− rk(E)αd−1(OX).
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These definitions agree with the intuition for ‘familiar’ sheaves. If E is locally free, its rank is
the usual notion.

EXAMPLE 9.1.2. Consider X = P1 and E = O(n) for some n ∈ Z, both one-dimensional. Then
by the same argument as in Example 2.3.3 we know that

PE (m) = χ(O(n)⊗O(m)) = h0(X,O(m + n))− h1(X,O(m + n)) = m + n + 1.

We read off rkO(n) = 1. Moreover, OX = O(0) and hence POX (m) = m + 1; we see

degO(n) = n + 1− 1 · 1 = n,

as expected. It is plain that the Hilbert polynomial is additive for sums of line bundles,
wherefore

PO(n1)⊕...⊕O(nr)(m) = rm + n1 + . . . + nr + r.

The rank of such a sum is then r and the degree, n1 + . . . + nr.

To define Gieseker-stability[1] (cf. Definition 4.1.4), let

pE (m) :=
1

αd(E)
PE (m)

be the reduced Hilbert polynomial. We equip Q[m] with an ordering by declaring that f 6 g if
and only if f (m) 6 g(m) for m� 0.
DEFINITION 9.1.3. Let E be a coherent sheaf on X of pure dimension d. We say E is Gieseker-
semistable if for all coherent subsheaves F ( E one has pF 6 pE and Gieseker-stable if the
inequality is strict.

A Gieseker-polystable sheaf is a direct sum of stable ones.

We henceforth omit the word ‘Gieseker’ from these notions. On the projective line, stability is
not very restrictive.

EXAMPLE 9.1.4. Recall that on P1, the line bundles O(n) are of pure dimension one, for a
coherent subsheaf must necessarily be O(`) with ` 6 n. Skyscraper sheaves and sums thereof
are not allowed because of their torsion. Consequently, all line bundles O(n) are stable, their
Hilbert polynomials being given in Example 9.1.2. Their sums are polystable, but not stable.
Indeed, for r > 2 we have

pO(n1)⊕...⊕O(nr)(m) = m +
n1 + . . . + nr

r
+ 1.

If N be the maximum of the ni, then O(N) is a proper coherent subsheaf with pO(N)(m) =

m + N + 1, which is bounded from below by the polynomial above.

This fact that polystable sheaves are not stable is generic and to be expected. Thinking of
representations as an analogue, one should view stable sheaves are building blocks of the
sheaves we are to study. A stable and polystable sheaf would be something like an irreducible
sum of irreducible representations, which is absurd. This is also the reason for using the reduced

[1]Named after the American mathematician David Gieseker.

105



Hilbert polynomial; using PE instead, polystable sheaves would in fact be stable, as one can
verify in the example of P1.

∗ ∗∗

We proceed with the definition of the moduli space. Fix X and H as prior. Akin to Definition
2.2.3, we define a functor assigning to a scheme S the S-flat families of semistable sheaves with
fixed Hilbert polynomial. Concretely, for P ∈ Q[t], let

MP
X : Schk

opp −→ Set : S 7−→
{

sheaves E on X×
k

S
∣∣∣∣ E is semistable, flat over S, and

has Hilbert polynomial PE = P

}/
∼= .

This is not quite what we want yet, because of the following. Let E ∈ MP
X and p : X× S −→ S

be the projection. If L is a line bundle on S, then E ⊗ p∗L is also flat over S. For any s ∈ S, define
the sheaf E(s) := E

∣∣
X×{s}. It is isomorphic to the similarly defined (E ⊗ p∗L)(s), the intuitive

reason being that tensoring E with the (pullback of) a line bundle simply amounts to scaling
the fibres E(s) over each point s by a constant. This constant varies over S depending on L,
but one obtains fibrewise isomorphisms. We should identify such sheaves; for E ,F ∈ MP

X(S),
set E ∼ F if there exists a line bundle L on S such that E ∼= F ⊗ p∗L.
DEFINITION 9.1.5. The moduli functor associated to a projective k-scheme X of finite type
with choice of very ample divisor and polynomial P ∈ Q[t] is the functor

ModP
X : Schk

opp −→ Set : S 7−→ MP
X(S)

/
∼ .

If it is representable by a scheme, the latter is called a moduli space of sheaves.

REMARK 9.1.6. Observe that whilst the Hilbert functor HilbP
X is not quite a moduli functor in

this sense, the notions are somewhat related. For Z ∈ X[n] for example, the structure sheaf OZ

is stable; its Hilbert polynomial is n by definition and any proper subsheaf is supported at
strictly fewer points (counted with multiplicity).

THEOREM 9.1.7. Suppose X is connected in addition to the previous assumptions. Then ModP
X is

representable by a projective scheme.

Proof. See Chapter 4 in loc. cit. ���

Whilst the moduli space may exist, its geometry need not be nice at all. These spaces are often
highly singular and not of the expected dimension, which complicates matters significantly.
For this reason, the ‘virtual’ techniques mentioned earlier are employed. Without going into
details, a virtual version of a quantity (e.g. an Euler characteristic) assigned to the moduli
space has the property of being the ‘ordinary’ version of that quantity in case the moduli space
is smooth of the expected dimension.
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9.2 The Vafa–Witten invariant on a variety of surfaces

In this section we give a bird’s-eye view of the last couple of years’ research on the topic. It is
almost entirely based on [Kool].[2] Fix C as the base field for all geometric objects. We briefly
revisit the physical origin of this discussion ere moving on.

Recall that the basic premise of [VafaWitten] was to test the predictions of S-duality for
topologically twisted super-Yang–Mills theories on certain algebraic surfaces. The partition
function (3.2.4) is expected to satisfy modular properties, but its definition required justification
(see Remark 3.2.8). Specifically, the surfaces in question were required to satisfy a number of
constraints for the partition function to feature the ‘ordinary’ topological Euler characteristics
of the respective instanton moduli spaces. In general, the number that plays the rôle of these
integers (and is equal to them in certain cases, such as that of K3 surfaces) is the Vafa–Witten
invariant that was defined more than a score (!) years after the two physicists’ original article.

This invariant is a rational number defined purely algebro-geometrically by Tanaka and
Thomas in [TanaThom]. Very roughly speaking, it is the integral of the virtual Euler character-
istic of a particular moduli space of sheaves. The idea of this space is as follows. We work over
a smooth, polarised, complex projective surface X. The equations of Vafa and Witten related to
the ‘vanishing theorems’ mentioned in Remark 3.2.8 look like momentum maps for a Hamilto-
nian action of SU(k). This places us in familiar waters; one might expect a Kempf–Ness-esque
result (cf. Theorem 4.1.11) to hold, whereby the (SU-orbits of) the solutions correspond to
some specific moduli space of sheaves (as in Theorem 4.2.8). This is indeed the case for Kähler
surfaces[3] and polarised surfaces such that the first Chern class of O(H) = O(1) is integral.
The precise statement is that the solutions to the equations are described by Higgs pairs, which
we define in the next section.

9.2.1 Teaching an old dog new Higgs

To see where these Higgs pairs might come from, let us treat an easy but insightful example.
Henceforth the word ‘compact’ is always to be read in the analytic topology of a smooth
complex scheme.

Recall that a coherent sheaf is called torsion if the modules of which it is locally the tilde on an
open affine covering are torsion, i.e., have nontrivial torsion subgroup.
EXAMPLE 9.2.1. Let X = Spec C and consider the trivial line bundle L on it with value C. This
line bundle can be interpreted as a vector bundle over X by viewing its sections themselves as
a scheme, in this case A1. Because this scheme is affine, the coherent sheaves on it are all given
by the tilde of C[t]-modules.

Suppose we only wish to consider finite-dimensional C[t]-modules, which is not too bizarre
a requirement. These will be quotients of the algebra C[t] that are necessarily torsion as

[2]Needless to say, any and all mistakes and inaccuracies are entirely the author’s fault.
[3]Such surfaces’ Hodge numbers in particular satisfy h2,0 6= 0, which should be kept in mind for the latter part

of this section.
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modules. Moreover, they are compactly (in fact, finitely) supported on A1. We conclude
that the compactly supported torsion sheaves on A1 are equivalent to the finite-dimensional
representations of the algebra C[t]. Such a representation is a finite-dimensional vector space
V together with an endomorphism given by the action of t. We can read this action as a map
V −→ V = V ⊗C C (on the sheaf side, E −→ E = E ⊗OX L), which will make sense shortly.

It is this latter interpretation of a coherent sheaf as a C[t]-module that will become the definition
of a Higgs pair. We wish to generalise the above to more general schemes X and line bundles
L. In order to generalise the interpretation of L as a vector bundle over X in the toy example
above, we require the notion of the total space of a sheaf on a scheme, akin to that of a vector
bundle over a smooth manifold. We refer to the tags 01LL, 01LQ and 01M1 of [Stacks] for
proofs and precise statements.

First we define the relative spectrum of a sheaf. Let X be a scheme and F , a quasicoher-
ent OX-algebra. Then the relative Spec of F is a scheme denoted SpecXF =: Y together
with a morphism π : Y −→ X such that for all open affine U ⊂ X there exists an isomor-
phism π−1(U) ∼= SpecF (U) and moreover for all open affines V ⊆ U, the inclusion maps
π−1(V) −→ π−1(U) are induced by the restriction maps F (U) −→ F (V). As usual, ‘all open
affines’ may be replaced by ‘one’s favourite open affine cover’.

The relative spectrum Y exists and is constructed by taking for each affine open U ⊂ X the
sections Γ(U,F ) and gluing them in a suitable manner. The total space of a line bundle shall
be the relative spectrum of the symmetric algebra of its dual sheaf. The symmetric algebra SL
of a line bundle L is defined as one would expect; the direct sum of all symmetric powers SnL.
DEFINITION 9.2.2. Let X be a complex projective surface and L, a line bundle. We define the
total space of L as the scheme

TL := SpecXSL∨

together with an affine morphism π : TL −→ X giving

π∗OTL =
⊕
n>0

SnL∨

the structure of a graded OX-algebra.

This is indeed well defined, as described in loc. cit. Let K be the canonical divisor of X, with
canonical line bundle O(K). As an example, we can obtain a very explicit description of its
total space for the projective line.

EXAMPLE 9.2.3. Write X = P1 = Proj C[x, y] = U0 ∪U1 with x 6= 0 on U0 and y 6= 0 on U1.
We have Γ(U1, Ω1

X/C
) = C[x]dx. Moreover, the degree of the bundle of one-forms, which is

the cotangent bundle, is −2 because dx is smooth everywhere except for a pole of order two in
y-infinity (the familiar d 1

x = − 1
x2 dx). We therefore identify O(K) = O(−2) = Ω1

X/C
.

To obtain the total space of O(−2), we must take the relative Spec of SO(2). Of course, as
OX-algebra, this is simply O(2)[t], a polynomial algebra in one variable, because O(2) is a line
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bundle. Being the tangent bundle, O(2) is locally generated by ∂
∂x and ∂

∂y . On overlap, we have

∂

∂x
=

∂y
∂x

∂

∂y
= − 1

x2
∂

∂y
.

We must therefore glue C[x][t] (on U1) and C[y][s] (on U0) such that y = 1
x and t = − 1

x2 s on
overlap. The homogeneous equation to which this identification corresponds is tx + sy = 0.
Therefore,

TO(K) = Proj
(

C[x, y][t, s]
/
(tx + sy)

)
with x, y in degree zero and t, s in degree one. This space is very familiar indeed; it is simply
the blowup Bl(0,0)A

2.

We are now ready to state the definition of a Higgs pair as the correct solution to the VW
equations. Recall that the determinant of a sheaf is its top exterior power.

DEFINITION 9.2.4. Let L be a line bundle on X. An L-Higgs pair is a pair (E, ϕ) with E a
coherent sheaf on X such that det E = OX and ϕ ∈ Hom(E, E⊗L) a traceless morphism.

A morphism of pairs (E, ϕ) −→ (F, ψ) is a morphism f : E −→ F such that the diagram

E E⊗L

F F⊗L

f

ϕ

f⊗id

ψ

is commutative. Write Higgs(L)X for the category of L-Higgs pairs.

For L = O(K), we simply say ‘a Higgs pair’. The additional requirements on det E and Tr ϕ

come from the structure group’s being SU(k); for U(k), these constraints would not be present.

We already saw that a Higgs pair for X = Spec C is nothing but a coherent finite-dimensional
OA1-module. This generalises to the following result.

PROPOSITION 9.2.5. Let L be a line bundle on X. There exists an equivalence of categories

Cohct(TL) ∼−→ Higgs(L)X,

where the subscript c means compact support and t stands for torsion. Moreover, this equivalence
respects Gieseker-(semi)stability.

Proof. We roughly sketch the idea presented in [TanaThom, Prop. 2.2].

The vector bundle map π : TL −→ X is affine, wherefore its pushforward establishes an
equivalence between coherent OTL-modules and π∗OTL-modules on X. But the latter algebra
is
⊕

n>0(L∨)n · ηn where η ∈ Γ(T, π∗L) is the zero section. This is a polynomial OX-algebra in
one variable L∨η, generated by OX and this variable. A module over this sheaf is therefore
an OX-module E together with the action of L∨η. The latter translates to a map E⊗L∨ −→ E
induced by η; tensoring with L on both sides then yields the Higgs pair. ���
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Let us end by working out the definition of a Higgs pair for X = P1. We leave it as an easy
exercise to the reader to verify that for, say, vector spaces V, W, the identity

∧i(V ⊕W) =
⊕

p+q=i

∧pV⊗
∧qW

holds for all 0 6 i 6 dim V + dim W. (Alternatively, use Proposition 8.1.7.) Hence, for line
bundles L,L′ we have

det(L⊕L′) =
∧2(L⊕L′) = L⊗L′.

EXAMPLE 9.2.6. Let E = O(2)⊕O(0)⊕O(−2) on P1. Its determinant is O(2 + 0− 2) = OX,
as desired. Since O(K) = O(−2), we need a traceless map

ϕ : O(2)⊕O(0)⊕O(−2) −→ O(0)⊕O(−2)⊕O(−4).

It is evident that there cannot be any nontrivial diagonal components, meaning tracelessness is
automatic. Let f ∈ C[X, Y] be a homogeneous quadratic polynomial, and λ, µ ∈ C. The most
general Higgs map is then of the form

ϕ =

0 λ id · f
0 0 µ id
0 0 0

 .

We use that Hom(O(n),O(m)) = Γ(X,O(n)∨ ⊗O(m)) is the homogeneous component of
C[X, Y] of degree m− n.

In this toy example, the Higgs field ϕ is not invariant under the scalar multiplication of C×.
This will recur in the two-dimensional case if, as with P1, the anticanonical divisor is ample or
trivial.

∗ ∗∗

We conclude that the mathematical realisation of Vafa and Witten’s work exhorts us to study
the moduli space of rank-k compactly supported coherent torsion sheaves on the threefold
TO(K), or equivalently Higgs pairs on X. We shall freely switch between these two points of
view. We also impose the condition of semistability in order to be able to define the moduli
space of these objects. Importantly, we restrict ourselves to those sheaves whose first and
second Chern classes ci ∈ H2i(X; Z) (here i = 1, 2) are such that stability and semistability
coincide. This is not a very restrictive requirement, but does simplify the situation considerably.

It is hence that Tanaka and Thomas set out to define the VW invariant (depending on both
ci as well as the number k, which was equal to 2 in [VafaWitten]) using the virtual Euler
characteristic of the moduli space of the sheaves above. This moduli space is obviously not
compact; one can scale a Higgs pair by a C×-action. We therefore take the subspace of fixed
points of the moduli space for this action, which is compact. Moreover, we have to dilacerate
the moduli space, seen from the Higgs point of view, for reasons that will become apparent
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anon. We do this in the next section, before explaining how Vafa and Witten’s computations
were retrieved and generalised to higher values of k by Kool and Göttsche et al.

9.2.2 Much ado abought branching: the sheafy arboretum

The moduli space of stable Higgs pairs (E, ϕ) with all of the assumptions made above has two
obvious branches that separately contribute to the integral defining the VW invariant.

The Higgs branch is the component for which ϕ = 0. Paradoxically, computations on this
branch are actually much more difficult than are those on the other branch. The part of the VW
invariant obtained from it is withal very simple in certain cases, as we shall see shortly. The
component where ϕ 6= 0 is known as the monopole branch. We comment on both branches for a
number of classes of surfaces.

∗ ∗∗

In Section 5 of their article — aptly named Computation by Physical Methods — Vafa and Witten
more or less compute the partition function (i.e., generating function of the VW invariants
across all topological sectors) on a surface X of general type whose Hodge number h2,0(X) 6= 0.
They do this entirely using physical arguments; after all, the correct mathematical formulation
did not yet exist. Their proposal (for k = 2) is a hefty equation [VafaWitten, Eq. (5.38)]. Its first
line is the contribution of the monopole branch, whilst the second and third are that of the
Higgs branch.

Göttsche and Kool (together with the latter’s former doctoral student T. Laarakker) developed
methods of testing Vafa and Witten’s proposal and found it to be correct [GöttKool] (Vafa and
Witten’s physical prowess seems to be unparallelled). This is no mean feat, for the moduli
spaces are quite singular for surfaces of general type, rendering many time-honoured methods
such as the Weil conjectures ineffective and requiring virtual techniques. Their method was
originally separate from the work of Tanaka and Thomas (which was also in the process of
being written at the time) and a priori not motivated by Vafa and Witten; the connections were
made very soon, however.

The two branches really are distinct. The generalisation of the monopole branch’s contribution
to the VW invariant (sc. to the first line of Vafa and Witten’s Equation (5.38)) to k > 2 was
partially carried out by Laarakker. His results predict the structure of the formula and its
dependence on the topology of the surface (in accordance with Vafa and Witten’s results),
but not the specific modular forms that appear. As k grows, these forms become increasingly
complicated, which the cases k = 4, 5 — to be commented on now — demonstrate.

REMARK 9.2.7. Interestingly, J. Labastida and C. Lozano published a proposed generalisation
of Vafa and Witten’s formula (5.38) for surfaces of general type and k an odd prime as early as
1999. Whilst it is correct for K3 and abelian surfaces (for which the situation is much simplified,
as we shall see), their result is wrong in other cases and was refuted by Kool et al.
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∗ ∗∗

The reader may have been wondering to what kind of operation the S-duality conjecture
might correspond on the mathematical side for surfaces of general type. The answer is: a great
miracle, quoth Kool. We already noted in Section 3.2.1 that there is a profound and unexpected
connection to the geometric Langlands correspondence. Vafa and Witten’s Equation (5.39)
shows the S-dual of their proposed formula (5.38). Mathematically, this S-duality transforma-
tion is exhibited by swapping the Higgs and monopole branches of the moduli space. This
is nothing short of bizarre! The consequence is that computations on the (somehow more
difficult) Higgs branch can be carried out in the monopole branch before being subjected to
S-duality. This approach, explained in detail from the physicist’s point of view in [DijkPrkBer],
is currently being applied in practice, and successfully so.

Prior to the advent of this philosophy, Göttsche and Kool found the generalisation of Vafa and
Witten’s formula to SU(3) on surfaces X of general type with H2,0(X) 6= 0 (and all the previous
assumptions, most prominently that semistability imply stability) by working directly on the
Higgs branch. (They used a formula of Mochizuki for this to reduce integrals over the moduli
spaces to ones over the surface’s Hilbert schemes.) For the treatment of k = 4 and 5, they
adopted the S-duality method instead, which has borne fruit. Their article presenting these
results is, at the time of writing, in its final stages and due to be published in the summer of
2021. Remarkably, the case SU(5) features the Rogers–Ramanujan continued fraction.

9.2.3 Managing the geometric menagerie

We have commented on the generalisations of Vafa and Witten’s computations to k > 2 for
surfaces of general type with nonvanishing Hodge number h2,0. (This includes many surfaces
of general type, but not all of them.) The sheaf moduli spaces were singular and the surfaces’
Hilbert schemes only appeared in complicated and long calculations after applying virtual
techniques to the original problem. For other surfaces, the situation is simpler.

Whilst del Pezzo surfaces were not treated by Vafa and Witten themselves, they did consider
the complex projective plane, to which each del Pezzo surface is birational. Both these and K3
surfaces are much easier to deal with than are surfaces of general type: the moduli space of
rank-k sheaves (with stability conditions, assumptions on the Chern classes, and so forth) is
smooth of the expected dimension and the monopole branch (of C×-fixed sheaves) is empty.
In this case the VW invariant reduces to the ordinary, topological Euler characteristic of the
moduli space [TanaThom, §7.2]. This is the same as the Euler characteristic of the corresponding
instanton moduli space. At last we have justified the computation in Theorem 6.3.1!

In fact, generalisations of Vafa and Witten on del Pezzo surfaces had been studied prior to
Tanaka and Thomas’s article, precisely because the geometry is so simple and the moduli spaces
are well behaved. Unfortunately, the moduli spaces are still rather complicated, precluding the
use of Hilbert schemes for del Pezzo surfaces; other computation methods must be used.
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This is not the case for K3 surfaces, which enjoy ‘the best of both worlds’. The corresponding
moduli spaces are smooth and only have a Higgs branch, but moreover they are deformation-
equivalent (a notion of equivalence weaker than birational equivalence) to the surface’s Hilbert
schemes. It is therefore not surprising that K3 surfaces have been prevalent throughout the
physical chapters of this thesis; the combination of having very amenable moduli spaces
that are furthermore equivalent (in an appropriate sense) to the surface’s Hilbert schemes, in
addition to featuring in the heterotic–type II duality and being Calabi–Yau, makes them ideal
candidates for study on the overlap of physics and mathematics.
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What is called an educated person is often someone who has
had a dangerously superficial exposure to a wide spectrum
of subjects.

— THOMAS SOWELL (1930),
Ever Wonder Why?: and Other Controversial Essays.

DISCUSSION AND OUTLOOK

D
ESPITE our best efforts — nigh as valiant as Eärendil’s sword — to provide a complete
and accurate account of the subject matter, there will inevitably be imprecise or
abridged statements, curtailed descriptions and other faults. We examine some of

these, as well as taking a brief moment to take a broader look at Hilbert schemes.

∗ ∗∗

First of all, a number of understandable but restrictive assumptions have been made from the
very onset. We assumed always to be working over algebraically closed fields, simplifying
geometric matters significantly. It might be interesting to explore the theory of Hilbert schemes
without this assumption. For instance, how do Hilbert schemes behave with respect to base
change along field extensions (étale, Galois, or otherwise)? Consider e.g. the (affine) subscheme
of the affine plane without the axes defined by X2 − 2Y2. It has no Q-rational points, but
over Q(

√
2 ), one may suddenly start studying moduli spaces of points. One can imagine

generalisations of such principles to lead to curious geometry. Similarly, we have been tacitly
assuming various desirable properties of our surfaces, such as separatedness, irreducibility,
and so on (q.v. Definition A.1.4). Perhaps dropping such a condition and seeing how far the
theory gets afore running into difficulties might hold a few lessons.

Such technical details aside, we emphasise that the theory we have treated is but a drop in
a vast ocean. Chapter 8 in particular saw the curtailment of the proof of its principal topic,
Theorem 8.2.3, because we had omitted the concept of Briançon schemes from the general
exposition on Hilbert schemes. Relatedly, the aspects of e.g. connectedness of Hilbert schemes
of surfaces were largely swept under the rug, for we focussed mostly on smoothness in
Theorem 2.5.2. Details on this can be found in [Nakaj99, passim] and [Lehn, §3.3]. On the
subject of smoothness: our attention was exclusively turned to curves and surfaces, whilst
the three- and higher-dimensional cases were dismissed as being difficult and wildly singular.
The truth is more subtle; one can actually derive from Fogarty’s Theorem that if X is smooth
and quasiprojective of dimension d, then for n = 1, 2, 3 the Hilbert schemes X[n] are smooth of
the expected dimension dn. For higher n, a point Z ∈ X[n](k) is smooth if dimk TxZ 6 2 for
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all x ∈ Z. See [ibid., Corollary 3.4] for details. Although the situation for d > 2 is therefore
undeniably more complicated than is that of surfaces, it is not utterly hopeless.

∗ ∗∗

The author’s personal and persistent bête noire is the precise relations amongst the Hilbert
scheme of the affine plane, the representation theory of the ADHM quiver, and the instanton
moduli spaceMR4

(nc)
(n, k) for k ∈N, as discussed at the end of Section 4. In the abelian case

k = 1 in particular, we saw very promising seeds germinating. The instanton space is trivial
here, as we have seen, but Nekrasov’s deformation to noncommutative R4 seemingly solved
that problem by assigning nonzero momentum maps to the ADHM equations. The quiver
representation with stability condition determined by a specific King character ϑ and the first
ADHM equation (alternatively, ϑ-semistable modules over the quiver’s preprojective algebra)
is precisely (A2

C)
[n]. Moreover, for k = 1, the ADHM equation on the vertex of dimension n

automatically implied that on the other, one-dimensional vertex. The question remains as to
where the second ADHM equation has gone, which seems to abstain from appearing.

For k > 2, these promising sprouts seemingly wither and perish: aforementioned representation
moduli space becomes isomorphic to a complicated space of sheaves on P2 in the spirit of
Chapter 9, apparently engendering greater distance between the representation theoretic and
geometric descriptions in terms of Hilbert schemes. What the instantons should be altogether
remains far from plain. This time, the first ADHM equation for the k-dimensional vertex is
no longer automatically fulfilled if that on the n-dimensional one is and the second ADHM
equation remains notable by its absence. We regret not having been able to completely unravel
this conundrum and hope that perhaps a future endeavour might do so.

∗ ∗∗

Another pressing point worthy of a thesis on its own is the unanticipated, indeed, astonishing
appearance of the L-group in the formulation of S-duality (q.v. Section 3.2). Having found out
about this connection at a rather late stage of this work, it would unfortunately have been too
much to include a detailed treatise of, say, the contents of [KapuWitten]. We limited ourselves
to recalling the definition of the Langlands dual and working out the pertinent example of
SU(2), concluding (Remark 3.2.3) in the process that we did not understand what the meaning
of the L-group is in physics, for their claims regarding the L-duals of various groups did not
align with the mathematical descriptions thereof at all.

We need hardly proclaim that the Langlands programme is of immense profundity — this is
news to no-one — and that its emergence in the discussion of the S-duality conjectures is a
sign of great mysteries waiting to be solved both on the physical and mathematical riverbanks.
We would be very interested to find out how these connections will develop in the future, not
least since the mathemetical research concerning the work of Vafa and Witten has been gaining
considerable pace over the last few years.

116



On the algebro-geometric side, the research of Göttsche and Kool from Section 9.2 is quite
literally work in progress. The generalisations of Vafa and Witten’s computation to ranks four
and five are due for release this summer. As the difficulty increases step by step, one may
wonder what mysteries rank seven or even higher may hold. Based on current developments,
the modular functions that are to appear may be expected to become progressively complicated.

∗ ∗∗

Let us end by commenting on some matter that we did not treat. In Chapter 9, we assumed
that the sheaves and surfaces under consideration were such that semistability coincided with
stability. This need not hold in general; as the title of the article [TanaThom] indicates, there is
a follow-up article in which the strictly semistable case is treated. This is more difficult, as one
might expect, wherefore we have not spent any time on it.

Similarly, Chapter 8 ended with a sketch of the proof that the joint cohomology of all Hilbert
schemes of a smooth, complex projective surface carries a Fock space representation of the
Heisenberg algebra h. In fact, more is true; by studying the cup products on this cohomology
space and their interactions with the Nakajima operators, one may deduce that the space carries
the structure of a vertex operator algebra. These objects are incredibly relevant physically,
appearing in string and conformal field theory, but fell outside the scope of this work. A concise
treatment may be found in [Lehn, §5–6].

Finally, Chapter 7, the pièce de résistance of the physical portion of this work, was perhaps
somewhat meagre in the computation department. In particular, the contour integral that we
claimed produced the Cardy formula for the Fourier coefficients of the inverse Igusa form
was not worked out in detail. This was not out of scholarly niggardliness but because of
the very late stage at which this subject entered the present work. The interested reader is
invited to thoroughly peruse the original article [DijkVerVerI], as well as the subsequent work
[ChengVerlin] by Miranda Cheng and Erik Verlinde, in which the relevant calculations are
performed in all their glory.
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If we were called upon to name the proudest accomplish-
ments of our species, whether in an intergalactic bragging
competition or in testimony before the Almighty, what would
we say?

We could crow about historic triumphs in human rights,
such as the abolition of slavery and the defeat of fascism.
But however inspiring these victories are, they consist in the
removal of obstacles we set in our own path. [...]

We would certainly include the masterworks of art, music,
and literature. Yet would the works of Aeschylus or El Greco
or Billie Holiday be appreciated by sentient agents with
brains and experiences unimaginably different from ours? [...]

Yet there is one realm of accomplishment of which we can
unabashedly boast before any tribunal of minds, and that is
science. It’s hard to imagine an intelligent agent that would
be incurious about the world in which it exists, and in our
species that curiosity has been exhilaratingly satisfied. We can
explain much about the history of the universe, the forces
that make it tick, the stuff we’re made of, the origin of living
things, and the machinery of life, including our mental life.

Though our ignorance is vast (and always will be), our
knowledge is astonishing, and growing daily.

— STEVEN PINKER (1954)

Opening of Chapter 22, Science, of Enlightenment Now.

Zoo leit de zaeck by my, en daer op ga ik aen,
En heb in ’t zwaer belegh de stormen uitgestaen,
En dagh en nacht voor aen geworstelt op de wallen:
’t Vermoeide volck gesterckt, en rustigh uit gevallen:
Mijn’ broeder Ot gequetst zien sterven in mijn’ schoot:
Krackeelen neer geleit: in brand, in hongers nood,
ghelijck een vader my voor ’t algemeen gedraegen.
En noit bezweeck mijn moed in droeve nederlaegen:
noch ’k blies my zelven op in voorspoed, noch zocht roem
in ’s vyands ondergang: hoe noode ick vyand noem
die onverzoenelijck zich tegens my verzetten,
en wenschen met mijn bloed hun blanck geweer te smetten.

— JOOST VAN DEN VONDEL (1587–1679)

Excerpt from the Gysbreght van Æmstel, ll. 1.143–54.
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Ohe, iam satis est, ohe, libelle,
iam pervenimus usque ad umbilicos.
Tu procedere adhuc et ire quaeris,
nec summa potes in schida teneri,
sic tamquam tibi res peracta non sit,
quae prima quoque pagina peracta est.
Iam lector queriturque deficitque,
iam librarius hoc et ipse dicit,
‘Ohe, iam satis est, ohe, libelle.’

— MARCUS VALERIUS MARTIALIS (ca. 39–ca. 103),
Epigrams, IV.LXXXIX.

CONCLUSION

Q
UITE a number of chapters, definitions, theorems, computations and — most promi-
nently — harrowing puns ago, we embarked on a quest for the moduli space of
points of a scheme. The journey was fraught with damsels in distress, dreadful drag-

ons, and dinghy dungeons; the sailing was scarcely, as they say, smooth.[1] Ere obeying Martial
and laying down our quill, let us take inventory of the in our opinion not too shabby loot we
have acquired.

∗ ∗∗

In order to study simultaneous configurations of n ∈ N points on a smooth curve (over an
algebraically closed field), we could employ its nth symmetric product, which is itself smooth. In
higher dimensions, this is no longer the case: all configurations of n > 2 points on the scheme
for which at least two points coincide effect singular points of the symmetric product. For
surfaces however, the nth Hilbert scheme (of points) provides a solution to this problem, being
defined as the scheme representing the Hilbert functor, which parametrises flat and proper
families of closed subschemes with Hilbert polynomial the constant n. Under the nonrestrictive
condition of the base surface’s being quasiprojective, this scheme indeed exists by a result of
Grothendieck’s, who introduced the concept in the first place.

A particularly instructive example of such a Hilbert scheme is that of the affine plane for n = 2.
It has both a markèd geometric interpretation as the space of pairs of points on the plane
together with the line connecting them — which, in particular, very explicitly exhibits the
behaviour of a blowup of the symmetric square in its singular locus, i.e., whenever the points
coincide —, as well as a representation theoretic one, being the moduli space of certain quiver
representations. (Specifically, a special case of the ADHM quiver.)

By Fogarty’s Theorem, the Hilbert scheme preserves smoothness and connectedness of the
base surface if the latter is quasiprojective and moreover resolves the singularities of the
symmetric product. With this powerful result to hand, we have licence to study the cohomology
of the underlying smooth manifolds of the Hilbert schemes of a complex surface X and, in

[1]Pun intended.
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particular, practise physics as well as mathematics. Considering the direct sum over all n of
these cohomologies yields extraordinary results in both disciplines.

For example, the two-variable generating function of the Betti numbers (or Euler characteristics,
if one takes the alternating sum in the appropriate variable) of all of X’s Hilbert schemes has
a remarkable closed expression that depends entirely on the Betti numbers of X itself and is
known as Göttsche’s formula, which holds if X is a smooth, complex projective surface. It can
be used to construct a representation of the Heisenberg algebra on the joint cohomology space,
mimicking the Fock space of excited states from physics. Furthermore, applying Göttsche’s
formula to K3 or abelian surfaces reproduces the partition function of a bosonic or fermionic
string theory, respectively, compactified on that surface. This is particularly telling in the
context of heterotic–type II duality.

Further compactification in one or two dimensions of a type II theory on a K3 surface (or a
heterotic theory on an abelian surface) by means of one or two circles, respectively, witnesses
the arising of the DMVV formula, a generalisation of Göttsche to elliptic genera derived using
orbifold cohomology. These genera manifest themselves as partition functions of BPS states in
superstring theories. Moreover, the DMVV formula in the case of a six-dimensional compactifi-
cation to K3× T2 can be used to derive the entropy of dyonic black holes (carrying both electric
and magnetic charge) by relating the so-called Igusa Siegel modular form obtained from the
DMVV formula to the partition function of the dyons’ quarter-BPS states.

∗ ∗∗

These partition functions obtained from results such as Göttsche’s or the DMVV formulæ can
be explicitly realised by supersymmetric SU(k)-Yang–Mills gauge theories in the worldvolume of
D-branes in a IIA string theory compactified on an algebraic surface X. Namely, in a system
of n ‘loose’ D0-branes and k coincident D4-branes wrapped around X, the action shows that
the former can be interpreted as instantons in the worldvolume of the latter. This results in a
quantum theory whose target space is the moduli space of SU(k)-instantons with charge n. If X
is taken to be R4 (although this is not projective), the ADHM construction explicitly allows one
to identify this space with a moduli space of quiver representations, which in turn relates it
to the Hilbert scheme of the complex affine plane (whose analytification is R4). The precise
relations if k > 1 are withal rather strenuous, as discussed in the previous section.

If X is K3, then, depending on n and k, this instanton moduli space is smooth and resolves
the singularities of an appropriate symmetric power of X. The previously established orbifold
techniques and formulæ for genera and partition functions allow one to derive the modularity
predictions of Vafa and Witten in their famous test of the S-duality conjectures on K3 surfaces
for k = 2. In this context, S-duality — or, more precisely, Montonen–Olive duality — is the
statement that the complex coupling constant of an N = 4 super-Yang–Mills theory with
structure group G, an element of the upper halfplane, be invariant under the action of the
modular group SL2(Z). Specifically, the conjecture avers that the theory be invariant under
the simultaneous assignments τ 7−→ −1/τ (this map being one of the two usual generators of
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SL2(Z), viewed as the group of fractional linear transformations, with invariance under the
action of the other generator being manifest) and G 7−→ LG. Here LG, denotes the L-dual of G,
suggesting a profound and hitherto poorly comprehended connection between S-duality and
the (geometric) Langlands programme.

Vafa and Witten’s tests of and predictions for S-duality in such supersymmetric Yang–Mills
theories have recently been the subject of much research in algebraic geometry. The skilful
attempts not only to interpret their work by means of sound mathematics, but also to generalise
it to ranks k > 2 and surfaces of general type have proven fruitful. Over the last few years,
Tanaka, Thomas, Göttsche, Kool, and others have been labouring to accomplish these feats,
and not without success. For example, the correct expressions for k = 4 and 5 are due to be
published in the summer of 2021 and feature supremely exotic modular functions.

Hilbert schemes appear abundantly in these developments. The correct mathematical for-
mulation of Vafa and Witten’s work heavily involves moduli spaces of stable sheaves on the
base surface and computations thereon can be reduced to difficult calculations on its Hilbert
schemes. Surfaces of general type are the most tenacious herein; for del Pezzo and K3 surfaces,
the situation is simpler. Indeed, for the latter, these complicated sheaf spaces are actually
deformation-equivalent to the Hilbert schemes of the K3 surface, thus making available all
salient tools and results involved.

∗ ∗∗

We congratulate the reader on reaching the end of this behemoth and hope his was a pleasant
peregrination through its contents. At the risk of eliciting an admonishing beating of the wings
by a familiar golden eagle, we allow ourselves one concluding remark. Should an auspicious
archæologist a thousand years hence peradventure unearth a well-preserved copy of this work
in a handsome, bejewelled casket and, awestricken, cursorily browse its brittle pages, may he
glean this one fact: ages ago, folk certainly made quite the fuss about those Hilbert schemes.
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‘Now it is such a bizarrely improbable coincidence that anything so
mindbogglingly useful could have evolved purely by chance that some
thinkers have chosen it to see it as a final and clinching proof of the
non-existence of God.

‘The argument goes something like this: “I refuse to prove that I exist,”
says God, “for proof denies faith, and without faith I am nothing.”

‘“But,” says Man, “the Babel fish is a dead giveaway isn’t it? It could
not have evolved by chance. It proves you exist, and therefore, by your
own arguments, you don’t. QED.”

‘ “Oh dear,” says God, “I hadn’t thought of that,” and promptly
vanishes in a puff of logic.

‘“Oh, that was easy,” says Man, and for an encore goes on to prove
that black is white and gets himself killed on the next zebra crossing.

‘Most leading theologians claim that this argument is a load of
dingo’s kidneys, but that didn’t stop Oolon Colluphid making a small
fortune when he used it as the central theme of his best-selling book Well
That About Wraps It Up For God.

‘Meanwhile, the poor Babel fish, by effectively removing all barriers
to communication between different races and cultures, has caused more
and bloodier wars than anything else in the history of creation.’

— DOUGLAS ADAMS (1952–2001)

Excerpt from The Hitch Hiker’s Guide to the Galaxy, Chapter 6.

— NIKOLAI NIKOLAIEVICH NOSOV (1908–76)

Excerpt from , Chapter 30,
.
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J’ai toujours vu que, pour réussir dans le monde, il fallait
avoir l’air fou et être sage.

— MONTESQUIEU (1689–1755),
Pensées Diverses.

POPULAIRE SAMENVATTING

Teneinde de strekking van dit werk enigszins begrijpelijk weer te geven voor lezers zonder kennis van
wis- of natuurkunde is de Waarheid enigerlei kwaad berokkend.

K
LASSIEKE natuurkunde bestudeert puntdeeltjes die leven in een bepaalde ruimte, die
gekarakteriseerd wordt door haar meetkunde. Zo’n ruimte is bijvoorbeeld een lijn
over welke het deeltje in één richting (naar links of rechts) kan bewegen, of een

oppervlak, waarbij het twee richtingen heeft (ook nog naar voren en achteren). Bij het woord
“oppervlak” kan men denken aan een vlak tafelblad, maar ook aan een welvend heuvelland-
schap; zolang een deeltje op het oppervlak alleen maar naar links, rechts, voren en achteren
kan bewegen.

Veronderstel nu dat we niet naar één deeltje op een oppervlak kijken, maar naar meerdere
identieke deeltjes tegelijkertijd; zeg n > 1 stuks. In plaats van het bezien van n deeltjes op
ons oppervlak zouden we met evenveel voorspoed n kopieën van dit oppervlak kunnen
nemen, ieder waarvan een aantal (mogelijk nul) deeltjes bevat, zodanig dat alle kopieën samen
opgeteld n deeltjes dragen. De enige caveat hier is dat het niet uit dient te maken op wélk van
de n kopieën de deeltjes precies zitten; die zijn immers alle eender. Of we nu twee deeltjes
op het derde oppervlak hebben en eentje op het achtste, of andersom; daar maken we geen
verschil tussen. Maar twee deeltjes op dezelfde kopie van het oppervlak is wel wezenlijk
anders dan twee kopieën met ieder één deeltje.

Met inachtname hiervan zien we dus dat n deeltjes op een oppervlak “hetzelfde is” als n
gekloonde oppervlakken, op elk waarvan zich een aantal deeltjes bevindt (in totaal n), maar
wel op volgorde na. Als we ons oppervlak even X noemen, dan duiden we deze ‘stapel’ van n
exemplaren van X aan met SnX. Dit heet het nde symmetrische product van X, maar je mag hier
de S lezen als ‘stapel’.

Deze beschrijving van SnX komt erg logisch voor, maar dat “op volgorde na” blijkt de situatie
helaas wel te fnuiken. We kunnen namelijk de stapel SnX zélf zien als ruimte waar n deeltjes op
kunnen leven. Deze ruimte is dan echter niet al te gerieflijk meer om mee te werken. Het woord
‘heuvellandschap’ als visualisatie van een oppervlak was namelijk met opzet gekozen; voor
natuurkundige doeleinden willen we dat onze ruimten glad zijn. Intuïtief betekent dit voor
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een oppervlak dat we inderdaad met afgeplatte heuvels te maken hebben, en niet met scherpe
bergtoppen — er mogen zich geen spitsen, breuken of kliffen bevinden. Welnu, ofschoon ons
oppervlak X aan deze eis moge voldoen, doet het zonderlinge SnX dit helaas niet. Tot zover de
natuurkunde van meerderedeeltjessystemen...

Maar we laten ons niet terneerslaan — de wiskunde had deze perikelen reeds eerder ontwaard
en biedt grif de oplossing! Er blijkt namelijk iets heel speciaals te gelden voor oppervlakken
in het bijzonder. (In hogerdimensionale ruimtes zoals kubussen is dit al niet meer zo.) Een
deelgebied der wiskunde genaamd algebraïsche meetkunde vertelt ons precies waar de scherpe
bergen van SnX zich bevinden en waar de gladde heuveltjes. Bovendien beschrijft zij een
techniek om de hele ruimte ‘glad te strijken’. De technische term hiervoor is opblazen; het ligt
vrij dicht bij de waarheid om hierover na te denken als het tot ontploffing brengen van een
scherpe bergtop, waarna een erg geschrokken maar glad heuveltje achterblijft, alsmede een
‘krater’. Met deze kraters wordt bedoeld dat het opblazen zijn sporen achterlaat. Als het stof is
neergestreken en we het symmetrische product van X aldus met genoegzaam grof geweld glad
gemaakt hebben, blijft er een ruimte over die het (nde) Hilbertschema van X heet. (Een “schema”
is een wiskundige term voor een bepaald soort meetkundige ruimtes en David Hilbert was
een zeer beroemde Duitse wiskundige.) Op de kraters na ziet dit Hilbertschema er precíés zo
uit als SnX, maar juist dankzij het opblazen is het wel overal glad. We kunnen ons dus weer
aan natuurkunde laven.

∗ ∗∗

In de onderhavige scriptie wordt het Hilbertschema van oppervlakken geïntroduceerd en we
bewijzen enkele belangrijke eigenschappen ervan, met name dat het gladheid “erft” van het
onderliggende oppervlak, zoals net beschreven. Verder behandelen wij een aantal toepassingen
van Hilbertschema’s in zowel wis- als natuurkunde. Een belangrijk en beide vakgebieden
behelzend aspect is het zogeheten S-dualiteitsvermoeden uit de natuurkunde. Een dualiteit is in
dezen een soort verband tussen ogenschijnlijk verschillende natuurkundige concepten, die
eigenlijk dezelfde natuurkunde blijken te beschrijven. Om Brian Greene te parafraseren, je kunt
over twee duale theorieën nadenken als waren zij dezelfde beschrijving van de natuurkunde
maar in verschillende talen. De ene is in het Nederlands geschreven, en de andere in het Japans.
Als een natuurkundige beide talen machtig is, kan hij de twee theorieën begrijpen voor wat
ze zijn: dezelfde natuurkunde, maar gezien vanuit een Westers, dan wel Oosters perspectief.
De hamvraag is: welke werken in de bibliotheek der natuurkunde zijn waarachtig anders, en
welke elkaars vertalingen?

Hét klassieke voorbeeld van een dualiteit is die van elektromagnetisme. Het is algemeen bekend
dat elektrisch geladen deeltjes (bijvoorbeeld elektronen of protonen) een elektrisch veld pro-
duceren; evenzo brengen magneten (zoals koelkastmagneetjes, of de kern van deze planeet[1])
magnetische velden voort. De wiskundige beschrijving van elektromagnetisme noopt nu tot
het volgende: stel dat er een universum bestaat welk in alle opzichten gelijk is aan het onze,

[1]Wij gaan er op gronden van waarschijnlijkheid van uit dat de lezer zich op Aarde bevindt.
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behalve dat elektrische en magnetische velden omgewisseld zijn. Dan is dit universum qua
natuurkunde niet te onderscheiden van het onze. Met andere woorden, elektromagnetische en
“magnetoëlektrische” theorie zijn elkaars duale; twee vertalingen van dezelfde natuurkundige
beginselen. Het vermoeden van S-dualiteit is een soortgelijke uitspraak, maar dan in het veel
chiquere jasje van snaartheorie.

Snaartheorie is een tot dusver onbevestigde natuurkundige theorie die heel beknopt als volgt
kan worden samengevat. Zij poogt de wereld te beschrijven door deeltjes (elektronen, enz.)
te zien als gevolg van trillingen van submicroscopisch kleine ‘snaartjes’. Net als gitaarsnaren
trillen deze met verschillende frequenties — in plaats van geluid produceren deze frequenties
echter de deeltjes waaruit bijvoorbeeld sterrenstelsels, planeten, en verjaardagskalenders
bestaan. Snaartheorie heeft verschillende gedaanten waarvan vermoed wordt dat deze eigenlijk
duaal aan elkaar zijn, oftewel vertalingen van een algemeen werk. Één zo’n vermoeden heet
S-dualiteit en het controleren ervan is behoorlijk lastig.

In de negentiger jaren publiceerden de heren Cumrun Vafa en Edward Witten, gelauwerde
natuurkundemagnaten van hoog kaliber, echter een inmiddels beroemd artikel waarin zij de
beweringen van S-dualiteit testten in een heel specifieke situatie, waarin dit minder netelig is.
Aan deze speciale situatie ligt in feite onze eerdere beschrijving van deeltjes op een oppervlak
ten grondslag. Het oppervlak is hier een soort golfplaat waaraan de uiteinden van snaren
zich kunnen verankeren. (Zie voorblad voor een illustratie hiervan.) Zo’n ‘golfplaat’ heet in
de snaartheorie een braan, afgekort van ‘membraan’. Gebruikmakend van de wiskundige
theorie van symmetrische producten en Hilbertschema’s zulker branen konden in deze situatie
natuurkundige grootheden worden berekend waarover S-dualiteit bepaalde voorspellingen
doet. Vafa en Witten vonden bevestiging van het vermoeden, en deden bovendien voorstellen
voor algemenere uitspraken in soortgelijke doch moeilijke situaties.

Vanuit wiskundig perspectief bleek het overigens heel ingewikkeld om de gedegenheid van de
natuurkundige berekeningen te staven. De afgelopen paar jaar werd allengs duidelijker hoe dit
zou moeten geschieden; momenteel wordt er vanuit de algebraïsche meetkunde hard gewerkt
om Vafa en Wittens natuurkunde met de door wiskundigen immer nagestreefde precisie te
onderbouwen. De Hilbertschema’s van die snaartheoretische branen spelen hierbij een cruciale
rol. Wat blijkt namelijk; de algebraïschemeetkundeberekeningen kunnen met wat werk worden
vereenvoudigd tot berekeningen met die Hilbertschema’s, en de resultaten komen prachtig
overeen met die van de natuurkundigen van meer dan twintig jaar eerder. Bovendien worden
er thans allerlei verbanden gevonden met andere takken van wiskunde, hetgeen suggereert
dat S-dualiteit een veel diepere en moeilijkere uitspraak is dan aanvankelijk gedacht.

∗ ∗∗

We komen tot de slotsom dat dit samenspel tussen natuur- en wiskunde rijke oogsten oplevert.
Hilbertschema’s zijn een schitterend voorbeeld van hoe de twee vakgebieden samenwerken
en malkander aanvullen. Het doel van deze scriptie is om een brug tussen hen te slaan en een
blik te werpen door de geloken vensters die de raadselen van deze wereld herbergen.
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Πάντων χρημάτων μέτρον ἄνθρωπος [ἔστι], τῶν μὲν ὄντων ὡς

ἔστι, τῶν δὲ μὴ ὄντων ὡς οὐκ ἔστιν.

— PROTAGORAS (ca. 490–ca. 420),
being cited in Plato’s Dialogue Πρωταγόρας.

APRELIMINARIES AND PREREQUISITES

A
FORE plunging into the world of Hilbert schemes, the reader is bidden to browse this
appendix, in which a number of relevant prerequisites have been collected for his
convenience. In the spirit of Protagoras, one may decide for oneself which sections

require thorough perusal and which, but a cursory glance. Being inherently disparate, this
part’s sections are organised roughly by subject, for lack of internal congruity otherwise.

A.1 Algebraic geometry

A.1.1 Basic definitions and results

This section chiefly serves to recall some basic definitions and results that continually appear
throughout the thesis. It is by no means intended as a complete account of the geometric
prerequisites.
DEFINITION A.1.1. Let f : X −→ Y be a morphism of schemes. Then f is called

(i) projective if for some n ∈ N0, it factors as a closed immersion X ↪−→ Pn
Y = Pn

Z ×
Z

Y

followed by the canonical projection;

(ii) quasiprojective if for some scheme T, there is a factorisation of f as an open immersion
X ↪−→ T followed by a projective morphism T −→ Y;

(iii) flat if for all x ∈ X, the induced map f ]x : OY, f (x) −→ OX,x is flat (i.e., makes OX,x a flat
OY, f (x)-module);

(iv) smooth if for all x ∈ X, it is flat and locally of finite presentation at x and moreover the
fibre X f (x) = X ×

Y
Spec κ( f (x)) is geometrically regular at x.

An S-scheme X is then called (quasi)projective/flat/smooth over the scheme S if the morphism
X −→ S is. The situation to keep in mind is S = Spec k, where k is a field. Intuitively, a
quasiprojective scheme is an open subscheme of a closed subscheme of some Pn

k . For properties
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equivalent to flatness or smoothness,[1] see [Stacks, §01U2] and [ibid., §01V4], respectively. The
length of a closed subscheme of a k-scheme is the dimension of its global sections.

LEMMA A.1.2. If k = k and X is a k-scheme of finite type, then there is a natural bijection between
X(k) and the closed points of X.

Proof. It is an elementary fact that both X(k) and the closed points are in natural one-to-one
correspondence with {x ∈ X | κ(x) = k}. ���

This justifies many authors’ habit to simply write X when in fact X(k) is meant and use ‘point’
to mean ‘closed point’.

We proceed to define tangent spaces and immediately give an equivalent characterisation. Let
k be a field throughout. For the meaning of the first Hom-space in the definition, consult [ibid.,
§0B28].
DEFINITION A.1.3. Let X be a k-scheme and x ∈ X, any point. The (Zariski) tangent space to
X at x is

TxX = { f ∈ Homκ(x)(Spec κ(x)[ε], X) | f (pt) = x} = Homκ(x)
(
mx
/
m2

x , κ(x)
)

.

Following [Harts, Ch. V passim], we establish what we mean by curves and surfaces over k.
Recall that a smooth (i.e., real) manifold is called algebraic if it is the analytification of some
smooth complex scheme (or variety).
DEFINITION A.1.4. A surface over k is a (geometrically) integral, separated scheme of finite
type over k and of dimension 2.

Similarly, a curve is a scheme with the same properties but of dimension 1.

In particular, we do require neither smoothness nor projectiveness.

DEFINITION A.1.5. A resolution of singularities of a scheme X is a smooth scheme X̃ together
with a proper, birational map π : X̃ −→ X. It is called crepant if π preserves canonical divisors,
viz. π∗KX = KX̃.

We shall be working with a number of particular classes of surfaces, defined below.
DEFINITION A.1.6. A K3 surface is a smooth projective k-surface X, whose canonical divisor
is trivial and such that H1(X,OX) = 0.

REMARK A.1.7. In general, the rank of H1(X,OX) is called the irregularity of the surface, and
in characteristic zero it is equal to the difference of the arithmetic and geometric genera. If X is
a K3 surface,[2] applying Riemann–Roch for surfaces to the canonical divisor K = 0 shows that
the arithmetic genus must be 1. The correspondence between divisors and line bundles shows
the geometric genus is also 1, as the surface is smooth.

[1]The given definition of smoothness is not one use explicitly. We state it for completeness nonetheless. The
more practical notion is that the tangent space is of the expected dimension.

[2]« Ainsi nommées en l’honneur de Kummer, Kähler, Kodaira et de la belle montagne K2 au Cachemire, » quoth
André Weil.
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The following result is paramount in view of physical applications.
THEOREM A.1.8. Let X be any K3 surface over C. Its analytification is diffeomorphic to that of a
smooth quartic in P3 and hence all K3 surfaces are diffeomorphic.

Proof. See [Huybr, Theorem 7.1.1]. ���

A similar result holds for complex abelian surfaces, all of which are diffeomorphic to the four-
torus T4 = S1 × S1 × S1 × S1. Both abelian and K3 surfaces have Kodaira dimension 0. We
define two more surfaces that appear in Chapter 9.
DEFINITION A.1.9. A del Pezzo surface is a smooth projective k-surface whose anticanonical
divisor −K is ample.

Recall that del Pezzo surfaces are geometrically rational and hence their geometric genus,
which equals their Hodge number h2,0, is zero. In particular, complex del Pezzo surfaces are all
birational to P2

C.
DEFINITION A.1.10. A k-surface is said to be of general type if its Kodaira dimension is at
least, hence equal to, 2.

A.1.2 Biting off more than one can Chow

For the construction of the Nakajima operators in Section 8.2, we require the concept of Chow
groups. For a sufficiently nice scheme, these behave in a fashion similar to homology but with
a ring structure reminiscent of cohomology. For instance, the Chow groups satisfy a variant
of excision and the Mayer–Vietoris sequence. Furthermore, the ring structure generalises
intersection theory of divisors. In this section, we only present the bare minimum that we need,
without proofs. For details the reader may consult the book [Fulton, Ch. 1, 2 & 19] or, for a
quick overview, [Stacks, Tag 0AZ6].

Let X be a smooth, separated, integral scheme of finite type over a field k, say of dimension n.
In this section, ‘subscheme’ always means integral closed subscheme.

For m < n, define an m-cycle as a formal Z-linear combination ∑ ni[Zi] over the m-dimensional
subschemes Zi ⊂ X. The free abelian group on such subschemes is denoted Zm(X).

Let Y ⊂ X be a subscheme of dimension m + 1 and f ∈ κ(Y)×, a rational function. For every
prime divisor Z of Y containing a point at which f is regular, which is in particular an m-
dimensional subscheme of X, define the order of vanishing of f at Z as vY,Z( f ) where vY,Z is
the valuation of the local ring OY,Z. This makes sense because of smoothness and the fact
codimY Z = 1, implying that this ring is regular of dimension 1 and hence a discrete valuation
ring. We then define the principal cycle

divY( f ) :=
ÿ

vY,Z( f )[Z] ∈ Zm(X),

where the sum is finite and runs over the prime divisors Z of Y at some point of which f is
regular.
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Two m-cycles D, D′ ∈ Zm(X) are called rationally equivalent if there exist finitely many (m + 1)-
dimensional subschemes Y and fY ∈ κ(Y)× such that their difference equals D − D′ =
∑Y divY( fY). Quotienting this relation defines the Chow groups CHm(X), which some authors
write as Am(X).

DEFINITION A.1.11. We define the mth Chow group of X as

CHm(X) := Zm(X)
/
∼rat .

Moreover, set CH•(X) =
⊕

m>0 CHm(X).

It is easy to see that taking m to be maximal admits only Y = X, so CHn(X) = Z, generated by
[X]. For m one less, the definition of rational equivalence agrees with that of linear equivalence
of Weil divisors, so CHn−1(X) = Pic(X).

The Chow groups allow for both pushforwards and pullbacks of morphisms under mild
conditions. Let f : X −→ Y be a morphism of k-schemes and V ⊂ X, a subscheme. Then it
is known that dim f (V) 6 dim V and the inclusion of function fields κ( f (V)) ↪−→ κ(V) is a
finite field extension in case of equality. Define

deg(V/ f (V)) :=

[κ(V) : κ( f (V))] dim f (V) = dim V,

0 else.

This defines a pushforward map

f∗ : Zm(X) −→ Zm(Y) : [V] 7−→ deg(V/ f (V)) · [ f (V)]

on generators. Assuming properness, this descends to the Chow group.

PROPOSITION A.1.12. If f is proper, then there exists a well-defined morphism of abelian groups
f∗ : CHm(X) −→ CHm(Y) functorially in f .

Unlike homology, the Chow groups allow for pullbacks as well.

PROPOSITION A.1.13. Suppose that f is flat with r-dimensional fibres. Then the assignment

Zm(Y) −→ Zm+r(X) : [V] 7−→ [ f−1(V)]

descends to a well-defined morphism f ∗ : CHm(Y) −→ CHm+r(X), functorial in f .

Now assume that X is projective, with diagonal morphism ∆ : X −→ X× X. We can define a
ring structure on the Chow groups, whose construction is extremely similar to that of the cup
product on singular cohomology.

There exists a well-defined exterior product, given on generators by

Zm(X)× Z`(Y) −→ Zk+`(X×Y) : ([V], [W]) 7−→ [V ×W].

This yields a well-defined product on Chow groups as follows.
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DEFINITION A.1.14. The intersection product on the Chow groups is defined as

CHm(X)× CH`(X) −→ CHk+`−n(X) : (α, β) 7−→ α · β := ∆∗(α× β).

Set CH•(X) := CHn−•(X). Then the intersection product satisfies all the necessary properties
for CH•(X) to become a graded commutative ring. Restricted to the Picard group of X, this
coincides with the usual intersection form.

Finally, take k = C. Then there exists a cycle map

cl : CHm(X) −→ H2m(X; Z)

to the singular homology of X by sending the class of an m-dimensional subscheme to its
homological class. Intuitively, the degree doubles because the real manifold underlying X has
twice the dimension of X.

REMARK A.1.15. In general, such cycle maps land in the Borel–Moore homology of X, which
is, rougly speaking, ‘singular homology on compactly supported simplices’. As X is projective
and hence compact, we need not make this distinction.

A.2 Differential geometry

A.2.1 Hodge podge

We remind the reader of some elementary Hodge theory for the purposes of Chapter 3, omitting
proofs.

Let M be a compact, Riemannian n-manifold with volume form vol ∈ Ωn(M) and metric
g ∈ Γ(M, S2(T∗M)). If σ ∈ Γ(M,T∗M), let σg ∈ Γ(M,TM) be the section that sends each point
P ∈ M to the Riesz representantive of σP under gP. That is to say, we have

g(σg,−) = σ,

understood pointwise. This allows one to extend the inner products on the tangent spaces of
M to inner products on the cotangent spaces, as follows. For ϕ, ψ ∈ Γ(M,T∗M), set a pointwise
inner product (−,−) on T∗M by

(ϕ, ψ) := g(ϕg, ψg).

Similarly, the kth exterior product can be given a smooth assignment of inner products as
follows. Given ωi, ηj ∈ Γ(M,T∗M) for each 1 6 i, j 6 k, we define on generators of

∧k
T∗M the

inner product (understood pointwise)

(ω1 ∧ . . . ∧ωk, η1 ∧ . . . ∧ ηk) := det
(
(ωi, ηj)

k
i,j=1

)
.

We have thus defined an inner product on Ωk(M) = Γ(M,
∧k

T∗M) for each k, which we keep
denoting (−,−).

131



In the definition below, we give the Hodge star as map of differential forms — it is sometimes
defined as a smooth morphism of vector bundles between the appropriate exterior powers of
the cotangent bundle of M, but one only ever needs the induced map on global sections.

DEFINITION A.2.1. The Hodge star operator is the unique map from Ω•(M) to itself, such
that for each 0 6 k 6 n, it restricts to a map of C∞(M)-modules

? : Ωk(M) −→ Ωn−k(M)

satisfying for each ω, η ∈ Ωk(M) the equality

ω ∧ ?η = (ω, η)vol.

The operator is given explicitly in local coordinates (x1, . . . , xn) by

?(dxi1 ∧ . . . ∧ dxik) = dxik+1 ∧ . . . ∧ dxin ,

where the indices are chosen such that the ordering (i1, . . . , in) gives the chosen orientation of
M. In particular, ?vol = 1 and ?2 = (−1)k(n−k) as the reader easily verifies.

The Hodge star can be used to define an inner product on differential forms.

PROPOSITION A.2.2. For each 0 6 k 6 n, the form

Ωk(M)×Ωk(M) −→ R : (ω, η) 7−→
∫

M
ω ∧ ?η

defines an inner product.

One may then consider adjoints of operators on Ω•(M) with respect to this inner product. An
obvious candidate is the exterior derivative d : Ωk(M) −→ Ωk+1(M). It is not difficult to verify
that its adjoint d: : Ωk+1(M) −→ Ωk(M) is given by

d: = (−1)nk+1?d?.

In degree 0, it is set to be the zero map.

DEFINITION A.2.3. The Laplace–de Rham operator, or simply Laplacian, on Ω•(M) with
respect to the metric g is defined as

∆ := dd: + d:d = (d + d:)2.

A differential form is called harmonic if it lies in the kernel of ∆. It is trivial to verify that a form
is harmonic if and only if it lies in the kernels of both the exterior derivative and its adjoint;
this follows by computing the inner product from Proposition A.2.2 between a form and its
image under ∆. This defines a canonical map ker(∆) −� H•dR(M). There is a deep result due
to Hodge stating that this projection is in fact injective.
THEOREM A.2.4 (Hodge). Every cohomology class on a compact, oriented Riemannian manifold
M has a unique harmonic representative. Equivalently, the inclusion ker(∆) ↪−→ Ω•(M) induces a
graded isomorphism on cohomology.
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A.2.2 Hyperkähler structures

A manifold whose (real) dimension is a multiple of four can be endowed with a so-called
hyperkähler structure. Sensu ampliore, this means it carries three almost complex structures
satisfying quaternionic relations. This seems a beguilingly innocuous notion, but the structure is
in fact extremely rich. The complex structures make the manifold symplectic (with holomorphic
symplectic forms) and, of course, complex, with appropriate compatibility rules. For precise
constructions and proofs, we refer the reader to [Hitchin], or [Nakaj99, Chapter 3] for the
relevant bits. We also recall the definition of a Kähler manifold, which has just one almost
complex structure. Hyperkähler manifolds generalise this to a ‘quaternionic triplet’ of such.

Recall that an almost complex structure on a manifold X is a smooth endomorphism of TX
squaring to −id.

DEFINITION A.2.5. Let (X, g) be a Riemannian manifold of dimension a multiple of four. It
is called hyperkähler if there exist three almost complex structures I, J, K that are Hermitian
with respect to g and moreover satisfy

I2 = J2 = K2 = I JK = −idTX

and ∇I = ∇J = ∇K = 0, where ∇ is the Levi–Civita connection on TX.

Each of the almost complex structures canonically induces a symplectic form (called its Kähler
form). It is given by ωI(v, w) = g(Iv, w) for v, w ∈ TX and similarly for J and K. By fixing one
of the almost complex structures, say I, we obtain real and holomorphic symplectic forms

ωR := ωI and ωC := ωJ + iωK.

∗ ∗∗

Let (Q, α) be a quiver setting as in Section 4.1. We can equip Rep(Q Q, α) with a hyperkähler
structure, such that the two momentum maps µR, µC obtained in Section 4.1.3 are precisely
the momentum maps obtained from the GLα-action with respect to the symplectic forms ωR

and ωC, respectively. We do not prove this correspondence, but instead refer to [NekrBrad,
§3]. As in Section 4.1.3, identify Rep(Q Q, α) with its tangent space and use the sum of the trace
pairings at each arrow as Riemannian metric.

For V ∈ Rep(Q Q, α) we define the following. For each arrow a ∈ Q Q1, set (IV)a := iVa. That is,
I is simply multiplication by i. Next, for b ∈ Q1 and b∗ ∈ Q1 we set

(JV)b := −V:

b∗ and (JV)b∗ := V:

b .

Finally, take K := I J.

A.2.3 Gaining momentum on symplectic manifolds

In this section we list some basic facts about symplectic geometry for the purposes of Chapter 4,
intended to define momentum maps that appear therein. We refer to the book [daSil, Chapter
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22]. The reader is assumed to be familiar with Section A.4.2 farther ahead.
DEFINITION A.2.6. A symplectic manifold is a smooth manifold M equipped with a closed,
nondegenerate 2-form ω ∈ Ω2(M).

A symplectomorphism between two symplectic manifolds (M, ω) −→ (N, η) is a smooth
map f : M −→ N such that f ∗η = ω.

The smooth functions on a symplectic manifold carry additional structure. For each f ∈ C∞(M),
there exists a unique vector field X f ∈ Γ(M,TM) such that X f y ω = d f . This is well defined
because ω is nondegenerate.

PROPOSITION A.2.7. Let (M, ω) be a symplectic manifold. Then the bracket

{−,−} : C∞(M)× C∞(M) −→ C∞(M) : ( f , g) 7−→ ω(Xg, X f )

turns C∞(M) into a Lie algebra.

Proof. See [ibid., §18.3]. ���

REMARK A.2.8. The Lie bracket is in fact a Poisson bracket (it satisfies the Leibniz rule), hence
the notation. We shall not need the Poisson structure in the forthcoming.

Let (M, ω) be a symplectic manifold and G, a real Lie group with Lie algebra g. Suppose G acts
on M from the left by symplectomorphisms of M. There exists a morphism of vector bundles

ι : g×M −→ TM : (x, P) 7−→ d
dt

∣∣∣∣
t=0

exp(tx) · P.

(Cf. Equation (3.1.1).) For any x ∈ g, let Xx := ι(x,−) ∈ Γ(M,TM) and consider the 1-form
ωx := Xx y ω. There is no reason for ωx to be exact, but suppose it is, writing ωx = d fx for
some fx ∈ C∞(M). This defines a map g −→ C∞(M) : x 7−→ fx up to a constant, which we
ignore. There is also no reason for this map to be R-linear or even a morphism of Lie algebras,
but suppose it is. We have a commutative triangle as follows.

g Γ(M,TM)

C∞(M)

x 7→Xx

x 7→ fx

f 7→
X f

(A.2.1)

Indeed, X fx y ω = d fx = ωx = Xx y ω and ω is nondegenerate. Define the map

µ : M −→ g∗ : P 7−→ f−(P).

That is to say, µ(P)(x) = fx(P) for x ∈ g. By assumption, this assignment is well defined up to
an additive constant. We now formalise the above to define the momentum map.[3]

[3]The moniker moment map is often seen, but this stems from a faulty translation of French application moment.
See www.bit.ly/3kdqjke.
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DEFINITION A.2.9. Let M, G, g be as above. We call the action of G on M Hamiltonian if

(i) the 1-form ωx is exact for all x ∈ g, making the triangle (A.2.1) commute,

(ii) the map g −→ C∞(M) : x 7−→ fx is a morphism of Lie algebras, and

(iii) the map µ defined above is G-equivariant, where G acts on g∗ via the coadjoint represen-
tation. That is, for all P ∈ M and g ∈ G,

µ(g · P) = Ad∗(g)(µ(P)).

If these conditions are satisfied, µ is called the momentum map for the group action.

∗ ∗∗

Let V be a real vector space, with dual V∗. There is a standard construction to view V ⊕V∗ as
a symplectic manifold, see [ChrGin, Example 1.1.3]. Choose a basis {qi}i for V, with dual basis
{pi}i of V∗. By identifying V ⊕V∗, seen as real manifold, with its (co)tangent space, we can
define a symplectic form by ∑i dpi ∧ dqi. Concretely,

ω : (V ⊕V∗)× (V ⊕V∗) −→ R :

ÿ

i

viqi + vi pi,
ÿ

j

wjqj + wj pj

 7−→ÿ

i

viwi − viwi.

Suppose a Lie group G acts symplectomorphically on V and suppose for convenience this
action is linear. That is, V is a symplectic representation of G and V∗, its contragredient. Then
of course these actions combine to an action of G on V ⊕V∗.
THEOREM A.2.10. This action of G on V ⊕V∗ is Hamiltonian, and its momentum map is given by

µ : V ⊕V∗ −→ g∗ : v + ϕ 7−→ (x 7−→ ϕ(x · v)).

Proof. See [ChrGin, Prop. 1.4.8 f.]. ���

A.3 Through the looking glass of supersymmetry

In this section, we outline the setting of supersymmetric quantum mechanics. Useful references
are Witten’s article [Witten82] (we do not need his results on Morse theory) and [Nguyen]. The
discussion serves to explicitly exhibit the connection with cohomology. Whilst these concepts
are basic knowledge, their discussing is meant to serve as a motivation for the appearance of
the cohomology of instanton moduli spaces in Chapter 6.

Consider ordinary quantum mechanics. By definition, this means there exists a complex Hilbert
spaceH of quantum states and a C∗-algebra (see Appendix A.4.5) A of operators onH, where
the star involution is given by taking adjoints with respect to the inner product on the Hilbert
space. The algebra contains distinguished elements called observables that are selfadjoint, or
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Hermitian. In particular, there is an operator H called the Hamiltonian that governs time
evolution of the quantum states and whose action is given by the Schrödinger equation. The
observables satisfy canonical commutation relations amongst themselves.

It is important to remark that the composition of two observables need not be an observable
itself, as it is not Hermitian unless the two operators happen to commute.
EXAMPLE A.3.1. A very simple example is given by the free particle on the line. In this scenario
H = L2(R) and one can consider the position and momentum operators x̂ and p̂, respectively.
For ψ ∈ H, these act by

(x̂ψ)(x) = xψ(x) and ( p̂ψ)(x) = i
∂ψ(x)

∂x
for all x ∈ R,

with commutation relation [x̂, p̂] = i.

REMARK A.3.2. By now, many alarm bells should have gone off. The operators considered
above are not bounded, so A is not actually a closed subalgebra of B(H). What is the meaning
of a commutator of two observables when their regions of definition are restricted to make them
bounded? In practice, such considerations are generally ignored. One way of working around
this problem mathematically is to define one-parameter subgroups via formal exponents
eitT for T ∈ A an observable and t ∈ R. These land in the unitary group U(H), where the
commutation relations can be implemented by a Baker–Campbell–Hausdorff expression. We
ignore this.

In supersymmetric quantum physics, the Hilbert space becomes a super vector space. That is,
it has a gradingH = H+ ⊕H−, where the even part is called bosonic and the odd, fermionic. It
comes with a C∗-superalgebra A called the supersymmetry algebra. The commutation relations
are then understood with respect to the supercommutator bracket.

If an operator A ∈ A maps H± into H±, it is called even. If A(H±) ⊆ H∓, it is instead
called odd. The Hamiltonian H is, in particular, assumed to be even. For A ∈ A, we can
always write A

∣∣
H+

=
(

A++ A+−
)> where A+± ∈ HomC(H+,H±). We can similarly define

A−± ∈ HomC(H−,H±). The supertrace of A is then

sTr(A) := TrH+(A++)− TrH−(A−−),

which indeed has the properties of a trace. Define an even element of A distinguishing bosonic
from fermionic states by (−1)F := idH+ ⊕ (− idH−). It is easy to see that sTr(A) = Tr((−1)F A).

∗ ∗∗

The principal assumption of supersymmetry is now that there exists a symmetry of the
Lagrangian exchanging bosons and fermions. By Noether, such a symmetry corresponds to
a conserved charge, which is nothing more than an odd element of A. These charges should
satisfy very particular relations amongst themselves and with the Hamiltonian.

136



DEFINITION A.3.3. Let m ∈ N and H,A as above. The theory is called N = m supersym-
metric if there exist odd operators Q1, . . . , Qm ∈ A, called supercharges, such that the following
relations hold for all i, j = 1, . . . , m and i 6= j:

(i) Q2
i = H,

(ii) [Qi, (−1)F] = 0,

(iii) [Qi, Qj] = 0.

Mind that the definition contains the superbracket. An immediate consequence of the first
condition is that [Qi, H] = 0.

REMARK A.3.4. In the general setting of a (relativistic) quantum field theory, A also contains
observables corresponding to (angular) momentum, Lorentz boosts, and so on. They have set
superbrackets with the other observables and amongst themselves, which uniquely determines
the algebra due to a famous result by Coleman and Mandula: under reasonable assumptions on
the theory, its symmetry group is always the direct product of the Poincaré group (comprising
Lorentz transformations and translations) with a group of ‘internal’ symmetries, such as
supersymmetry. We do not work with this full algebra for simplicity and thus restrict ourselves
to quantum mechanics in 0 + 1 dimensions.

Even though H is not bounded, it is still equal to Q2
i = QiQ

:

i , and one can show easily that
it is a positive operator, wherefore its eigenvalues are discrete and nonnegative. Order them
ascendingly {E0, E1, . . .}, with 0 as the lowest eigenvalue. Write

H =
⊕
n>0

Hn =
⊕
n>0

H+
n ⊕H−n ,

in whichH±n is the even or odd (depending on the sign) component of the eigenspace corre-
sponding to the nth eigenvalue. The eigenspaces do indeed respect the Z/2Z-grading onH
and all those eigenspaces for strictly positive eigenvalues in fact have isomorphic bosonic and
fermionic parts. We briefly verify these claims.

LEMMA A.3.5. Write H = Q2 = QQ:. Then the eigenspacesHn of H split into bosonic and fermionic
componentsH±n . Additionally, for n > 0, there is an isomorphism Q : H+

n
∼−→ H−n .

Proof. By definition Q2Hn = Hn, so define H±n := Hn ∩ H±. Because Q and H commute,
QHn ⊆ Hn, and hence QH±n ⊆ H∓n , from which the first claim easily follows.

For the second part, let n > 0. We know H
∣∣
Hn

= En idHn , meaning Q
∣∣
Hn

is invertible and in
fact its own inverse, up to a constant. Moreover, Q mapsH±n intoH∓n and hence must be an
isomorphism on those spaces. ���

Define the Witten index, which can be thought of as a supersymmetrised partition function, as
sTr(e−βH). It is easily checked that it does not in fact depend on β, wherefore one can take the
limit β→ ∞. In defining this expression, the eigenvalues of H are assumed to grow sufficiently
rapidly for the exponent to remain well behaved.
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COROLLARY A.3.6. The Witten index equals dimH+
0 − dimH−0 .

Only the subspace of zero-energy states, called zero modes, does not have the boson–fermion
correspondence. To see this, note H0 = ker H. Because each Qi is Hermitian, it is a normal
operator, and hence its kernel equals that of its square. We see that QiH0 = 0, so the two spaces
H±0 are not constrained in any way, and moreover for a state |ψ〉 ∈ H, we see that

H|ψ〉 = 0 ⇐⇒ Qi|ψ〉 = 0.

Any such zero mode is in principle a possible vacuum of the system, for there are no states
with negative energy. Moreover, observe that being in the kernel of some Qi is equivalent to
being in the kernels of all of them. We therefore pick one arbitrarily and call it Q to simplify
notation. This operator can be used to compute the Witten index, as follows.

Since Q
∣∣
H0

= 0 and it is an odd operator, we can write it as a matrix with respect to the
Z/2Z-grading as

Q
∣∣
H0

=

(
0 q
q: 0

)
,

for some q ∈ HomC(H+
0 ,H−0 ). It is then evident that

Tr(−1)F = dimH+
0 − dimH−0 = dim ker q− dim ker q: = ind q.

The reader recalls that the analytical index of a (Fredholm) operator is defined precisely as
the difference between the ranks of its kernel and cokernel.[4] On the other hand, the Witten
index has the appearance of a partition function and can therefore be computed as the path
integral of (the exponent of minus) the Euclidean action, where we enforce periodic boundary
conditions and mind that the fermionic fields lie in a Graßmann algebra.[5]

∗ ∗∗

The considerations above capture the philosophy of supersymmetry: each bosonic state has
a fermionic superpartner of equal energy and vice versa, except for the ground states. But
there is a spanner in the works: such superpartners have not been observed in nature. One
way to solve this conundrum is by postulating that supersymmetry must be spontaneously
broken, apparently, wherefore the bosons and fermions arising from the theory need not come
in superpairs. In other words, any supersymmetric system observed in nature has ‘chosen’
a ground state, which is therefore not invariant under the symmetry. Since this symmetry is
implemented by Q, we conclude that, for supersymmetry to be broken, the ground state of the
system must have positive energy.

This presents another obstruction: being zero or not is arbitrarily sensitive to perturbations,
meaning a perturbative approach cannot be fruitful. An alternative approach is to consider

[4]The McKean–Singer Theorem allows one to generalise this procedure to Dirac operators on any Clifford
bundle, but we shall not need this.

[5]This computation is actually a special case of the Atiyah–Singer Index Theorem. In Example A.3.7, the
statement reduces to Chern–Gauß–Bonnet.
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instantons, since they are related to quantum tunnelling processes between local minima of
the action (q.v. Section 3.1). In other words, they can reveal whether or not there are multiple a
priori ground states of the system. This suggests we should very much be interested in the
kernel of the Hamiltonian. The following example illustrates how this naturally leads one to
consider the (de Rham) cohomology ring of the base manifold.
EXAMPLE A.3.7. Consider classical N = 1 supersymmetric quantum mechanics for a free
particle on a Riemannian manifold X. Its Lagrangian is simply L = 1

2 ẋ2. As previously seen,
the Hilbert space in the non-supersymmetric case would be something along the lines of
‘square-integrable functions from X to C’. A natural Hilbert space in the supersymmetric
situation is therefore

H := Ω•(X)⊗
R

C
∧

,

where the hat denotes L2-completion of the complexified differential forms, with inner product
as in Proposition A.2.2. The Z/2Z-grading is given by degree. As Hamiltonian, take the
Laplacian H = ∆ = dd: + d:d, which is Hermitian and even (and very much unbounded).
Take Q = d + d:, which is indeed Hermitian, odd and squares to H, by virtue of the fact that

d2 = 0 = d:2
.

The ground states are precisely the harmonic forms, which by Theorem A.2.4 give rise to
H•dR(X; C). Now, the Witten index — i.e., supersymmetric partition function — is the analytical
index of Q, which is the Euler characteristic χ(X).

The conclusion to draw from this example is that our endeavour, as outlined in the Introduction,
will inevitably lead to a super string theory where the object of interest is the cohomology
ring of the quantum physics’s target space and whose partition function is some kind of Euler
characteristic. In our string theoretical setting, the situation shall be more complicated, but the
general principle is the same.

A.4 Miscellanea

A.4.1 Thalia and Melpomene in algebraic topology

We remind the reader of the existence of (co)homological products, which are relevant in
Section 8.2. See [Hatcher] for details.

Let X be a topological space and R, a ring. The cup product defines a ring structure

Hi(X; R)×Hj(X; R) −→ Hi+j(X; R) : (α, β) 7−→ α ^ β.

The cap product pairs homology with cohomology via

Hi(X; R)×Hj(X; R) −→ Hi−j(X; R) : (α, β) 7−→ α _ β.

If X is an oriented, compact, smooth manifold of (real) dimension n with fundamental class
[X] ∈ Hn(X; R), the Poincaré duality isomorphism is given by

PD: Hi(X; R) ∼−→ Hn−i(X; R) : α 7−→ α _ [X].
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A.4.2 The joy of the adjoint

Let G be a Lie group with neutral element e and Lie algebra g. Then the adjoint representation
Ad: G −→ GL(g) is defined by Adg = d(h 7−→ ghg−1)

∣∣
e for g, h ∈ G.

If ϕ : G −→ GL(V) is any representation, its contragredient representation (pace S. Lang), also
simply called the dual representation, is defined by

ϕ∗ : G −→ GL(V∗) : g 7−→ ϕ∗(g),

where for any functional f ∈ V∗ and v ∈ V, the action is ϕ∗(g)( f )(v) = f (ϕ−1
g v). Similarly, if

π : g −→ gl(V) is a representation, its contragredient is defined by

π∗ : g −→ gl(V∗) : x 7−→ π∗(x),

defined on f ∈ V∗ and any v ∈ V by π∗(x)( f )(v) = − f (πxv).

A.4.3 Moderately modular: Jacobi forms

Elliptic genera as introduced in Section 5.1 sometimes satisfy the definition of a weak Jacobi
form. These are functions that appear naturally when studying elliptic curves. Like modular
forms, they are functions on the upper halfplane H but also on the elliptic curve. In order to
allow for such functions to be holomorphic but not constant, one is led to introduce parameters
(the weight and index) upon which these functions depend and a condition for the behaviour
‘at infinity’. This is the analogue of how modular forms have a weight and a condition at i∞
compared to modular functions. The proper definition is as follows; we refer to [Zagier] for
more motivation and examples.
DEFINITION A.4.1. A map ϕ : H×C −→ C is called a Jacobi form of weight k ∈ Z and index
N ∈ 1

2 Z if it satisfies the following transformation rules for all τ ∈ H and z ∈ C:

(i) ϕ
(

aτ+b
cτ+d , z

cτ+d

)
= (cτ + d)k · e 2πiNcz2/cτ+d ϕ(τ, z) for all

(
a b
c d

)
∈ PSL2(Z),

(ii) ϕ(τ, z + `τ + m) = e−2πiN(`2τ+2`z)ϕ(τ, z) for all `, m ∈ Z,

and moreover it has a Fourier expansion of the form

ϕ(τ, z) =
ÿ

m>0

ÿ

`∈Z,
`64Nm

c(m, `)qmy`

for certain c(m, `) ∈ Z, where q = e2πiτ and y = e2πiz.

A Jacobi form is called weak if the sum over ` in the Fourier series is not capped at 4Nm. Such a
Fourier series above is precisely the expansion of the elliptic genus as it appears in the DMVV
formula in Section 5.4.1.

140



A.4.4 Lattices on a rainy day

This section serves to define the concept of Narain lattices that appear in string theory com-
pactifications in Chapter 5. Recall that an integral lattice is a free abelian group L of finite
type equipped with a symmetric bilinear form 〈−,−〉 : L× L −→ Z. Let V := L⊗Z R be its
associated vector space. The dual L∨ of L is defined as

L∨ := {v ∈ V | 〈v, x〉 ∈ Z for all x ∈ L},

where the bilinear form is extended to V by setting 〈x⊗ a, y⊗ b〉 := 〈x, y〉ab on pure tensors,
with x, y ∈ L and a, b ∈ R. Clearly L = L⊗ {1} ⊆ L∨. If the inclusion is an equality, the lattice
is called selfdual or unimodular. Finally, a lattice is even if all norms 〈x, x〉 land in 2Z, for x ∈ L.

A lattice has a signature, defined as the signature of the form 〈−,−〉 extended to V. Since V is
simply RN , with N the rank of the lattice (known as its dimension), this signature is written
(n, m), meaning there are n plus, and m minus signs, with n + m = N.
DEFINITION A.4.2. Let n, m ∈ N0 be integers. A Narain lattice is an even integral lattice of
signature (n, m).

If n ≡ m mod 8, selfdual Narain lattices exist and are in fact unique up to isomorphism.
They are written Γn,m. As such, even and selfdual lattices are determined completely by their
signature and dimension. By convention, n−m is not a multiple of eight, the same notation
Γn,m is employed nonetheless.

In the context of physics, a Narain lattice Γn,m is often identified with Zn⊕Zm as abelian group,
and the elements are written as ‘left- and right-movers’ (pL, pR) to emphasise the application
of quantised momenta (as in Section 5.5). The bilinear form is identified with the standard
form of given signature and written 〈(pL, pR), (qL, qR)〉 = pL · qL − pR · qR, with · denoting the
ordinary scalar product.

The identification of L = Γn,m with Zn ⊕Zm is not unique but parametrised by the choice
of Z-bases in both components, with n · m independent choices of such generators. The
corresponding space of parameters, known as the Narain moduli space, is given by

SO(n, m; Z)
∖
SO(n, m)

/
SO(n)× SO(m) .

Here, SO(n, m) is the group of isometries of V with respect to its bilinear form of signature
(n, m) and SO(n) and SO(m) are the stabiliser subgroups of the right- and left-moving compo-
nents, respectively. Of course SO(n, m; Z) is the group of isometries of L itself. This space is in
fact a smooth manifold of the expected dimension.

A.4.5 Some superb structures

We define a number of mathematical ‘super’-structures that appear in the physical sections of
this thesis as well as Chapter 8. Fix a field K for this section. (In practice, Q, R or C.)
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DEFINITION A.4.3. A K-super vector space is a K-module V that carries a Z/2Z-grading
V = V+ ⊕V−. For a homogeneous element v ∈ V±, we denote its degree by |v|, defined as 0 if
v ∈ V+ and 1 if v ∈ V−.

We denote by Π the parity flip operator. It acts on a super vector space by swapping the degrees
of the homogeneous spaces.

A superalgebra over K is unsurprisingly a K-algebra whose underlying vector space is super,
and whose underlying ring is a graded ring with respect to the same grading. A super Lie
algebra, or Lie superalgebra, is slightly more intricate.
DEFINITION A.4.4. A K-Lie superalgebra is a K-super vector space g = g+⊕ g− equipped
with a Lie superbracket [−,−] : g× g −→ K that is K-bilinear and moreover satisfies for all
homogeneous elements x, y, z ∈ g:

(i) [x, y] = −(−1)|x|·|y|[y, x]; (super skew-symmetry)

(ii) (−1)|x|·|z|[x, [y, z]] + (−1)|x|·|y|[y, [z, x]] + (−1)|y|·|z|[z, [x, y]] = 0. (super Jacobi identity)

And now for something completely different.

DEFINITION A.4.5. A C∗-algebra is a complex algebra A whose underlying vector space is
Banach, equipped with an involutive map A −→ A : a 7−→ a∗ that is an antihomomorphism
of rings, such that

(i) for all λ ∈ C, we have λ∗ = λ, and

(ii) for all a, b ∈ A, we have ‖ab‖ 6 ‖a‖ · ‖b‖, and

(iii) for all a ∈ A, we have ‖aa∗‖ = ‖a‖2.

The ‘C’ stands for ‘closed’, as C∗-algebras were originally considered as closed subalgebras of
the algebra of bounded operators on a Hilbert space.[6] The C∗-algebra associated to a quantum
mechanical system is in fact of such form (see Appendix A.3 for details). It should not come
as a shock that a C∗-superalgebra is defined as a C∗-algebra whose underlying C-algebra is a
superalgebra.

[6]The famous Gelfand–Naimark Theorem in fact states (roughly) that all C∗-algebras are of this form.
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